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commutativity of the tensor product. -

We can now show that the torsion product of A and B depends only on 
the torsion submodules of A and B. 

II COROLLARY Let A and B be modules and let i: Tor A C A and 
i: Tor B C B. Then i * i: Tor A * Tor B ;::::; A * B. 

PROOF There is a short exact sequence 

o ~ Tor B -4 B ~ BITor B ~ 0 

where BITor B is without torsion. By lemma 5, A * (BITor B) = 0, and, by 
corollary 9, 1 * i: A * Tor B ;::::; A * B. By a similar argument, there is an iso­
morphism i * 1: Tor A * Tor B;::::; A * Tor B, and the composite of these gives 
the result. -

We use these results to extend the universal-coefficient theorem. Given a 
chain complex Cover R, a free approximation of C is a chain map 1": G ~ C 
such that 

(a) G is a free chain complex over R. 
(b) 1" is an epimorphism. 
(c) 1" induces an isomorphism 1"*: H(G) ;::::; H(C). 

12 LEMMA Any chain complex C has a free approximation, uniquely deter­
mined up to homotopy equivalence. 

PROOF For each q ~ 0 choose a homomorphism aq: Fq ~ Zq(C) such that Fq 
is a free R module and aq is an epimorphism. Let F~ = aq- 1(Bq(C)) and 
choose a homomorphism /3q: F~ ~ Cq+1 such that Oq+1/3q = aq I F~ [such a 
homomorphism exists because F~ is free and Oq+1: Cq+1 ~ Bq(C) is an epimor­
phism]. Define Gq = Fq EEl F~_1 and define homomorphisms 

by (}q(a,b) = (b,O) 

1"q: Gq ~ Cq by 1"q(a,b) = aq(a) + /3q-1(b) 

Then G = {Gq, () q} is a free chain complex and 1" = {1" q} is a chain map from 
C to C. 1" is epimorphic because 1"q(Gq) ::::l ker Oq and Oq1"q(Gq) ::::l im Oq. Since 
Zq(G) = Fq, Bq(C) = F~, and 1"q(Zq(C)) = aq(Fq), it follows that 

1"* : Zq(C)IBq(G) ;::::; Zq(C)IBq(C) 

Therefore 1": G ~ C is a free approximation of C. The uniqueness will follow 
from lemma 13 below. -

If 1": G ~ C is a free approximation of C, there is a subcomplex 
C = {Cq = ker 1" q: Gq ~ Cq} of G and a short exact sequence of chain 
complexes 

O~C~G~C~O 

Because 1"*: H( C) ;::::; H( C), it follows from the exactness of the homology 
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sequence of the above short exact sequence that C is acyclic (see corollary 
4.5.5a). Since C is a free chain complex (because it is a subcomplex of a free 
chain complex), it follows from theorem 4.2.5 that C is contractible. We use 
this in the following lemma. 

13 LEMMA Given a free approximation 'T: G ~ C of C and given a free 
chain complex C' and a chain map 'T': C' ~ C, there exist chain maps 
i: C' ~ G such that 'T 0 i = 'T', and any two are chain homotopic. 

PROOF As above, there is a short exact sequence of chain complexes 

o~c-4G~C~O 

wh<=:re C is chain contractible. Let D = {Dq: Cq ~ CHI} be a contraction 
of t. Because C~ is free and 'T q: Gq ~ Cq is an epimorphism, there is a homo­
morphism <pq: C~ ~ Gq such that 'T q<pq = 'T q. Then 

and 

hq = aq<pq - <pq-1a~: C~ ~ Cq_1 

'Tq_1hq = 'Tq_1aq<Pq - 'Tq-1<pq_1a~ = aq'Tq<pq - 'Tq_1aq 

= aq'Tq - 'T~_la~ = 0 

Therefore hq is a homomorphism of C~ into i(Cq_ 1). It follows immediately 
that i = {iq = <pq - iDq_1i-1hq} is a chain map i: C' ~ C such that 'Ti = 'T'. 

If i, i': C' ~ C are chain maps such that 'Ti = 'Ti', then i - i' = il/; for 
some chain map 1/;: C' ~ C. It follows immediately that 

D = {Dq = iDql/;q: C~ ~ Gq+1} 

is a chain homotopy from i to i'. • 

If C is a chain complex over Rand G is an R module, let C * G be the 
chain complex C * G = {Cq * G, aq * I}. We use this in the general universal­
coefficient theorem. 

14 THEOREM On the subcategory of the product category of chain complexes 
C and modules G such that C * G is acyclic there is a functorial short exact 
sequence 

o ~ Hq(C) ® G -4 Hq(C;G) ~ Hq- 1(C) * G ~ 0 

and this sequence is split. 

PROOF Let 'T: C ~ C be a free approximation to C (which exists, by lemma 12), 
and consider the short exact sequence 

O~C-4C-4C~O 

in which C is acyclic. By the characteristic property of the torsion product, 
there is an exact sequence of chain complexes 

o ~ C * G ~ C ® G i ® 1) C ® G ~ C ® G ~ 0 
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from which we get two short exact sequences 

o ~ C * G ~ C ® G ~ im (i ® 1) ~ 0 

o ~ im (i ® 1) C C ® G ~ C ® G ~ 0 

In the first of these C * G is acyclic by hypothesis, and C ® G is also acyclic 
(by theorem 8, because C is free and acyclic). From corollary 4.5.5c it follows 
that im (i ® 1) is also acyclic. In the second exact homology sequence this 
implies that 

(7' ® 1)*: H(C ® G) :::::; H(C ® G) 

The desired short exact sequence is now defined, so that the following diagram 
is commutative 

T.®lt t(T®l). tT.*l 

o ~ Hq(C) ® G ~ Hq(C ® G) ~ Hq- 1(C) * G~ 0 

where the upper row is the short exact sequence of theorem 8 (it is possible 
to define the unlabeled homomorphism in the bottom sequence to make the 
diagram commutative because all the vertical homomorphisms are isomor­
phisms). Then the bottom sequence splits because the top one does. 

The functorial property of the resulting short exact sequence (and the 
fact that it is independent of the particular free approximation of C) follows 
from lemma 13. -

It should be emphasized again that the sequence of theorem 14 does not 
split functorially. 

l:t COROLLARY Let 7': C ~ C' be a chain map between torsion-free chain 
complexes such that 7'*: H(C) :::::; H(C'). For any R module G, 7' induces an 
isomorphism 

7'*: H(C;G) :::::; H(C';G) 

PROOF This follows from the functorial exact sequence of theorem 14 and 
the five lemma. -

In corollary 15, if C and C' are free, then 7' is a chain equivalence (by 
theorem 4.6.10), and so is 7' ® 1: C ® G ~ C' ® G. Therefore 7'*: H(C;G) :::::; 
H(C';G). Corollary 15 shows that the latter fact remains true (even though 7' 

need not be a chain equivalence) for chain complexes without torsion. 

3 THE KUNNETH FORMULA 

In this section we extend the universal-coefficient theorem to obtain the 
Kiinneth formula expressing the homology of the tensor product of two chain 
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complexes in terms of the homology of the factors. This is given geometric 
content by the Eilenberg-Zilber theorem asserting that the singular complex 
of a product space is chain equivalent to the tensor product of the singular 
complexes of the factor spaces. 

If C and C' are graded R modules, their tensor product C ® C' is the 
graded module {(C ® C')q}, where (C ® C')q = (Bi+j=q Ci ® c;.. Similarly, 
their torsion product C * C' is the graded module {( C * C')q = (B;+j=q Ci * C;}. 
If C and C' are chain complexes, their tensor product [and torsion product] 
are chain complexes {( C ® C')q, G~} [and {( C * C')q, Gq}], where if c E Ci 

and c' E Cj with i + i = q, then 

a~'(c ® c') = GiC ® C' + (-l)ic ® ajc' 

[and all I Ci * Cj = ai * I + (-I) i1 * aJ]. It is easy to verify that C @ C' [and 
C * C'] really are chain complexes. We shall see later that the tensor product 
arises naturally in studying product spaces. 

If C' is a chain complex such that C~ = 0 for q =1= 0, then C ® C' is the 
same as the tensor product of C with the module Co. Therefore the tensor 
product of two chain complexes is a natural generalization of the tensor 
product of a chain complex with a module. It is reasonable to expect that 
there is a generalization of the universal-coefficient theorem to express the 
homology of C ® C' in terms of the homology of C and of C'. 

We define a functorial homomorphism of degree 0 

W H(C) ® H(C') ---7 H(C ® C') 

If c E Zi( C) and c' E Zj( C'), then c ® c' E Zi+j( C ® C'), and if c or c' is 
a boundary, so is c ® c'. Therefore there is a well-defined homomorphism fJ, 

such that 

fJ,( {c} ® {c'}) = {c ® c'} 

This homomorphism enters in the following Kiinneth formula. 

I LEMMA Let C and C' be chain complexes, with C' free. Then there is a 
functorial short exact sequence 

0---7 [H(C) ® H(C')]q ~ Hq(C ® C') ---7 [H(C) * H(C')]q~l ---7 0 

If C is also free, this short exact sequence is split. 

PROOF As in the proof of theorem 5.2.8, let Z' and B' be the complexes 
(with trivial boundary operators) defined by Z~ = Zq(C') and B~ = Bq~l(C'). 
There is a short exact sequence of chain complexes 

o ---7 Z' ---7 C' ---7 B' ---7 0 

Since C' is free, so is B', and there is a short exact sequence 

o ---7 C ® z' ---7 C ® C' ---7 C ® B' ---7 0 

from which we obtain an exact homology sequence 
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... ~ Hq(C ® Z') ~ Hq(C ® C') ~ Hq(C ® B') ~ Hq_1(C ® Z') ~ 

Note that C ® z' = ffi Ci, where (C i)q = Cq-i ® Zi(C') and C ® B' = ffi Ci, 
where (C j)q = Cq_j ® Bi-l(C')' Since Zi(C') and Bj(C') are free, it follows from 
theorem 5.2.14 that 

Hq(C ® Z') = ffi Hq(Ci) = ffi Hi(C) ® Zj(C') 
j i+j=q 

Hq(C ® B') = ffi Hq(Ci) = CB Hi(C) ® Bj(C') 
i i+i=q-l 

The map a* corresponds under these isomorphisms to the homomorphism 
(_l)i ® Yj, where Yi is the inclusion map yr Bj(C') C Zi(C')' Therefore there 
is a short exact sequence 

o ~ ffi [coker (-l)i ® Yi] ~ Hq(C ® C') ~ CB [ker (-l)i ® Yi] ~ 0 
i+i=q i+i=q-l 

To compute the two sides of this sequence, consider the short exact 
sequence 

Because Zi(C') is free, it follows from corollary 5.2.9 that there is an exact 
sequence 

o ~ Hi(C) * Hi(C') ~ Hi(C) ® Bj(C') (-I)l ® yj) Hi(C) ® Zi(C') 

~ Hi(C) ® Hi(C') ~ 0 

Hence 

ffi [coker (-l)i ® Yi] = ffi Hi(C) ® Hi(C') 
i+i=q i+i=q 

and 

ffi [ker (-l)i ® Yi] = ffi Hi(C) * HlC') 
i+i=q-l i+i=q-l 

Substituting these into the short exact sequence above gives a short exact 
sequence 

o ~ [H(C) ® H(C')]q ~ Hq(C ® C') ~ [H(C) * H(C')]q_l ~ 0 

We now verify that v is the map /-t. Given {c} E H( C) and {c'} E H( C'), 
then {c} ® c' E H(C) ® Z(C') and {c} ® c' = {c ® C'}CC8Z(C')' Therefore 
v( {c} ® {c'}) = {c ® C'}C0C' = /-t( {c} ® {c'}). Thus we have the desired 
short exact sequence, and it is clearly functorial. 

Assuming that C is also free, we can show that the sequence splits. By 
lemma 5.1.11, it suffices to find a left inverse for /-t. Because C and C' are free, 
so are B( C) and B( C'), and there are homomorphisms p: C ~ Z( C) and 
p': C' ~ Z(C') such that p(c) = c for c E Z(C) and p'(c') = c' for c' E Z(C'). 
Then 

p ® p': C ® C' ~ Z(C) ® Z(C') 
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maps B(C ® C')(which is contained in the union of im [B(C) ® C' --? C ® C'] 
and im [C ® B( C') --? C ® C']) into the union of im [B( C) ® Z( C') --? 

Z(C) ® Z(C')] and im [Z(C) ® B(C') --? Z(C) ® Z(C')]. Therefore the composite 

Z(C ® C') c C ® C' p ® p') Z(C) ® Z(C') --? H(C) ® H(C') 

maps B(C ® C') into 0 and induces a homomorphism 

H(C ® C') --? H(C) ® H(C') 

which is a left inverse of fL. -

A similar functorial short exact sequence can be defined if C (instead of C') 
is assumed free. The two short exact sequences are identical when C and C' 
are both free. 1 

2 COROLLARY If C' is a free chain complex and either C or C' is acyclic, 
then C ® C' is acyclic. -

We now extend lemma 1 to obtain the following general Kiinneth 
formula. 

3 THEOREM On the subcategory of the product category of chain complexes 
C and C' such that C * C' is acyclic there is a functorial short exact sequence 

o --? [H(C) ® H(C')]q -4 Hq(C ® C') --? [H(C) * H(C')]q-l --? 0 

and this sequence is split. 

PROOF Let 'T: e --? C and 'T': C' --? C' be free approximations. Then there is 
a short exact sequence 

o --? C' ~ C' 2.,. C' --? 0 

where C' is acyclic. Since C' is free, the six-term exact sequence becomes the 
exact sequence 

o --? C * C' --? C ® C' --? C ® G' ~ C ® C' --? 0 

Since C * C' is acyclic by hypothesis and C ® C' is acyclic by corollary 2, it 
follows (as in the proof of theorem 5.2.14) that there is an isomorphism 

(1 ® 'T')*: H(C ® G') :::::: H(C ® C') 

There is also a short exact sequence 

o--?C~e~c--?O 

where C is acyclic. Since C' is free, there is a short exact sequence 

o --? C ® G' --? e ® G' $ C ® G' --? 0 

By corollary 2, C ® C' is acyclic, and we have an isomorphism 

('T ® 1)*: H(G ® e') :::::: H(C ® G') 

1 This is proved in G. M. Kelley, Observations on the Kiinneth theorem, Proceedings of the 
Cambridge Philosophical Society, vol. 59, pp. 575-587, 1963. 
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Hence the composite ('7' ® '7")* = (1 ® '7")* ('7' ® 1)* is an isomorphism of 
H(G ® C') onto H(C ® C'). The desired short exact sequence is now defined 
so that the following diagram is commutative 

o ~ H(G) ® H(G') -4 H(G ® G') ~ H(C) * H(C') ~ 0 

1 T* * T* 

o ~ H(C) ® H(C') -4 H(C ® C') ~ H(C) * H(C') ~ 0 

where the top row is the short exact sequence of lemma 1 (it is possible to 
define the homomorphisms in the bottom row to make the diagram commu­
tative because the vertical homomorphisms are isomorphisms). The bottom 
sequence splits because the top one does. 

The functorial property of the sequence (and the fact that it is independ­
ent of the free approximations G and C') follow from the functorial property 
of the sequence in lemma 1 and from lemma 5.2.13. • 

If C and C' are chain complexes over Rand G and G' are R modules, 
the composite 

H(C ® G) ® H(C' ® G') -4 H[(C ® G) ® (C' ® G')] ~ 

H[(C ® C') ® (G ® G')] 

[where the right-hand homomorphism is induced by the canonical isomorphism 
(C ® G) ® (C' ® G') ::::: (C ® C') ® (G ® G')] is a functorial homomorphism 

tt': H(C;G) ® H(C';G') ~ H(C ® C'; G ® G') 

called the cross product. If z E H(C;G) and z' E H(C';G'), then 

z X z' E H(C ® C'; G ® G') 

denotes the image of z ® z' under this homomorphism [that is, z X z' = 
tt'(z ® z')]. 

4 COROLLARY Given torsion-free chain complexes C and C' and modules 
G and G' such that G * G' = 0, there is a functorial short exact sequence 

o ~ [H(C;G) ® H(C';G')]q.4 Hq(C ® C'; G ® G') ~ 

[H(C;G) * H(C',G')]q_l ~ 0 

and this sequence is split. 

PROOF This follows from theorem 3 once we verify that (C ® G) * (C' ® G') 
is trivial. To show that (C ® G) * (C' ® G') = 0, let 0 ~ F' ~ F ~ G be a 
free presentation of G. Because G * G' = 0, there is an exact sequence 

o ~ F ® G' ~ F ® G' ~ G ® G' ~ 0 

and since C and C' are without torsion, there is an exact sequence 

o ~ (C ® F') ® (C' ® G') ~ (C ® F) ® (C' ® G') ~ 
(C ® G) ® (C' ® G') ~ 0 
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Because there is also a short exact sequence 

O~C®F/~C®F~C®G~O 

where C ® F is without torsion, it follows that (C ® G) * (C' ® G/) is isomor­
phic to the kernel of the homomorphism 

(C ® F) ® (C' ® G/) ~ (C ® F) ® (C' ® G/) 

and hence is O. -

The cross product has the following commutativity with connecting 
homomorphisms. 

:; THEOREM Let 0 ~ C ~ C ~ C ~ 0 be a split short exact sequence of 
chain complexes and let z E H(C;G) and z' E H(C';G/). Then 

a* (z X Zl) = a* z X z' 
a*(z' X z) = (_l)degz'z' X a*z 

PROOF We have a commutative diagram of chain maps 

o ~ C®G ~O 

o ~ (C ® G) ® (C' ® G/) ~ (C ® G) ® (C' ® G/) ~ (C ® G) ® (C' ® G/) ~ 0 

with exact rows, with the vertical maps defined by forming the tensor product 
on the right with c' E Z(C' ® G/), where z' = {c/} [that is, r(c) = c ® c' for 
c E C ® G]. Because c' is a cycle, each vertical map is a chain map. Because 
the connecting homomorphism is functorial, we obtain a commutative diagram 

H(C ® G) ~ H((C ® G) ® (C' ® G/)) -;;t H((C ® C') ® (G ® G/)) 

a.t a. t tao 
H(C ® G) ~ H((C ® G) ® (C' ® G/)) -;;! H((C ® C') ® (G ® G/)) 

in which each vertical map is a suitable connecting homomorphism. The top 
row sends z into z X Zl, and the bottom row sends a* z into a* z X Z'. This 
gives half the result. The second half follows by a similar argument, the only 
difference being that the tensor product formed on the left with c' is not a 
chain map but either commutes or anticommutes with the boundary operator, 
depending on the degree of c' . This accounts for the presence of the factor 
( _l)deg z' in the second equation. -

The following Eilenberg-Zilber theorem! is the link between the algebra 
of tensor products and the geometry of product spaces. 

6 THEOREM On the category of ordered pairs of topological spaces X and 
Y there is a natural chain equivalence of the functor ~(X X Y) with the 
functor ~(X) ® ~(Y). 

1 The theorem appears in S. Eilenberg and J. A. Zilber, On products of complexes, American 
Journal of Mathematics, vol. 75, pp. 200-204, 1953. 
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PROOF We show that both functors are free and acyclic with models 
{~p,M}p,q",o. Let dn E ~n(~n X ~n) be the singular simplex which is the 
diagonal map ~n ~ ~n X ~n. If a: ~n ~ X X Y is any singular n-simplex, 
then a is the composite 

~n ~ ~n X ~n a' X an) X X Y 

where a' = PI 0 a and a" = P2 0 a, and PI and P2 are the projections of 
X X Y to X and Y, respectively. Conversely, given a': ~n ~ X and a": ~n ~ Y, 
there is a corresponding a = (a' X a")dn : ~n ~ X X Y. Therefore the 
singleton {dn} is a basis for ~n(X X Y), so ~(X X Y) is free with models 
{~n,~n}, and hence also free with models {~p,M}. Since ~P and ~q are each 
contractible, so is ~P X ~q. Therefore Li(~p X ~q) is acyclic, and we have 
proved that ~(X X Y) is a free acyclic functor with models {~p,~q}. 

Since ~p(X) is free with a basis ~p E ~p(~p) and ~q(Y) is free with basis 
~q E ~q(M), it follows that ~p(X) ® ~q(Y) is free with the basis 

~p ® ~q E ~p(~p) ® ~q(M). 

Then [~(X) ® ~(Y )]n is free with the basis {~p ® ~q}p+Q=n. Hence ~(X) ® ~(Y) 
is free with models {M,~q}. Since e: ~(~p) ~ Z and e: ~(~q) ~ Z are chain 
equivalences, it follows that 

e ® e: ~(~p) ® ~(~q) ~ Z ® Z = Z 

is also a chain equivalence. Hence, by lemma 4.3.2, the reduced complex of 
~(~p) ® ~(~q) is acyclic, and we have shown that ~(X) ® ~(Y) is also free 
and acyclic with models {~p,M}. The theorem now follows by the method of 
acyclic models. -

The same technique based on the method of acyclic models can be used 
to prove the following results. 

7 THEOREM Given X, Y, and Z, there is a chain homotopy commutative 
diagram 

~((X X Y) X Z) ::::; ~(X X (Y X Z)) 

::::t t:::: 
[~(X) ® ~(Y)] ® ~(Z) ::::; ~(X) ® [~(Y) ® ~(Z)] 

where the vertical maps are the natural chain equivalences of theorem 6. -

8 THEOREM For any X and Y there is a chain homotopy commutative 
diagram 

~(X X Y) 

=4 
::::; ~(Y X X) 

t:::: 
~(X) ® ~(Y) ::::; ~(Y) ® ~(X) 
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where the bottom map sends x ® y to ( - 1 )deg x deg y y ® x and the vertical 
maps are the natural chain equivalences of theorem 6. -

The sign in theorem 8 is necessary to make the map a chain map (that 
is, to make it commute with the boundary operators). 

Given topological pairs (X,A) and (Y,B), we define their product 
(X,A) X (Y,B) to be the pair (X X Y, X X B U A X Y). Then we have the 
following relative form of the Eilenberg-Zilber theorem. 

9 THEOREM On the category of ordered pairs of topological pairs (X,A) 
and (Y,B) such that {X X B, A X Y} is an excisive couple in X X Y there is 
a natural chain equivalence of Ll(X X Y)/Ll(X X B U A X Y) with 
[Ll(X)/ Ll(A)] Q9 [Ll(Y)/ Ll(B)]. 

PROOF Because {X X B, A X Y} is an excisive couple, the natural map 

Ll(X X Y)/[Ll(X X B) + Ll(A X Y)] ~ Ll(X X Y)/Ll(X X B U A X Y) 

is a chain equivalence. By theorem 6 there is a functorial equivalence of 
Ll(X) ® Ll(Y) with Ll(X X Y) taking Ll(X) ® Ll(B) and Ll(A) Q9 Ll(Y) into 
Ll(X X B) and Ll(A X Y), respectively. Hence there is a functorial chain 
equivalence of the quotient 

Ll(X) ® Ll(Y)/[Ll(X) ® Ll(B) + Ll(A) ® Ll(Y)] ~ [Ll(X)/Ll(A)] ® [Ll(Y)/Ll(B)] 

with the quotient 

Ll(X X Y)/[Ll(X X B) + Ll(A X Y)] 

Combining these two chain equivalences gives the result. -

For any two pairs (X,A) and (Y,B) we define the homology cross product 

p,': Hp(X,A; G) Q9 Hq(Y,B; G') ~ Hp+q((X,A) X (Y,B); G Q9 G') 

to be equal to the cross product 

Hp([Ll(X)/Ll(A)] Q9 G) ® Hq([Ll(Y)/Ll(B)] Q9 G') 

~ 
Hp+q(([Ll(X)/Ll(A)] Q9 [Ll(Y)/Ll(B)]) Q9 (G ® G')) 

followed by the functorial homomorphism of the bottom module to 

Hp+q(Ll(X X Y)/Ll(X X B U A X Y); G Q9 G') 

If z E Hp(X,A; G) and z' E Hq(Y,B; G'), then we write 

z X z' = p,'(z ® z') E Hp+q((X,A) X (Y,B); G Q9 G') 

Because Ll(X)/Ll(A) and Ll(Y)/Ll(B) are free, we can combine theorem 9 
with corollary 4 to obtain the following Kiinneth formula for singular 
homology. 
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10 THEOREM If {X X B, A X Y} is an excisive couple in X X Y and G 
and G' are modules over a principal ideal domain such that G * G' = 0, 
there is a functorial short exact sequence 

o ~ [H(X,A; G) (59 H(Y,B; G')]q ~ Hq((X,A) X (Y,B); G (59 G') ~ 

[H(X,A; G) * H(Y,B; G')]q-l ~ 0 

and this sequence is split. • 

In particular, if the right-hand term vanishes (which always happens if R 
is a field), then the cross product is an isomorphism 

J-t': H(X,A; G) ® H(Y,B; G') ::::; H((X,A) X (Y,B); G (8) G') 

The following formulas are consequences of the naturality of J-t and of 
theorems 5, 7, and 8. 

II Let f: (X,A) ~ (X',A') and g: (Y,B) ~ (Y',B') be maps and let 
z E Hp(X,A; G) and z' E Hq(Y,B; G'). Then, in the module 

Hp+q((X',A') X (Y',B'); G (8) G') 

we have 

(f X g)* (z X z') = f* z X ~ z' • 

12 Let p: (X,A) X Y ~ (X,A) be the protection to the first factor and let 
E: H(Y;G') ~ G' be the augmentation map. For z E Hq(X,A; G) and 
z' E Hr(Y;G'), in Hq+r(X,A; G (8) G'), 

p* (z X z') = J-t(z (8) E(Z')) • 

13 For Z E Hp(X,A; G), z' E Hq(Y,B; G'), and z" E Hr(Z,C; G"), in 

Hp+q+r((X,A) X (Y,B) X (Z,C); G (59 G' (8) G"), 
we have 

Z X (z' X z") = (z X z') X z" • 

14 Let T: (X,A) X (Y,B) ~ (Y,B) X (X,A) and qJ: G' (59 G ~ G (8) G'inter­
change the factors. For Z E Hp(X,A; G) and z' E Hq(Y,B; G'), in 
Hp+q((Y,B) X (X,A); G ® G'), we have 

T* (z X z') = (-l)pqqJ* (z' X z) • 

15 Let {(XI,A I), (X2 ,A2 )} be an excisive couple of pairs in X and let 
Z E Hp(XI U X 2, Al U A 2 ; G) and z' E Hq(Y,B; G'). For the connecting homo­
morphisms of appropriate Mayer-Vietoris sequences we have 

a.(z x z') = a.z x z' 

in Hp+q-I((XI n X2 , Al n A 2 ) X (Y,B); G (8) G') and 

a.(z' x z) = (-l)qz' x a.z 

in Hp+q_I((Y,B) X (Xl n X 2 , Al n A 2 ); G' (8) G) • 
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4 COHOMOLOGY 

A chain complex has a differential of degree -1. Related to this is the con­
cept of a cochain complex, which has a differential of degree + 1. Cochain 
complexes have many of the properties of chain complexes, and this section 
is devoted to a discussion of these properties. The functor Hom associates to 
every chain complex a cochain complex, and vice versa. The cohomology 
module of a topological pair with coefficients G is the homology module of 
the cochain complex associated in this way to the singular complex of the pair. 
The last part of the section is devoted to a brief discussion of axiomatic 
cohomology theory. 

Throughout this section R will denote a commutative ring with a unit. 
A cochain complex (over R), denoted by C* = {Cq,8q}, is a graded R module 
together with a homogeneous differential 8 of degree + 1 called the cobound­
ary operator (thus 8q: Cq ~ Cq+l and 8q+18q = 0 for all q). The kernel of 8 
is the module of cocycles Z( C *), and the image of 8 is the module of 
co boundaries B(C*). Then B(C*) C Z(C*), and the cohomology module 
H(C*) is defined to be the quotient Z(C* )/B(C*). 

If C * is a co chain complex, there is a chain complex C defined by 
Cq = C-q and aq: Cq ~ C q- 1 equal to 8-q: C-q ~ C-q+l. Then Hq(C) = 
H-q( C *), and the cohomology module of C * corresponds to the homology 
module of C. In this way results about chain complexes give results about co­
chain complexes. Thus we have the concepts of cochain map and cochain 
homotopy, and there is a category of cochain complexes and cochain homotopy 
classes of co chain maps. The cohomology module is a covariant functor from 
this category to the category of graded modules. Furthermore, given a short 
exact sequence of cochain complexes 

o ~ C* ~ C* ~ C* ~ 0 

there is a functorial connecting homomorphism 

8*: H(C*) ~ H(C*) 

of degree + 1 and a functorial exact cohomology sequence 

... ~ Hq(C*) ~ Hq+l(C*) ~ Hq+1(C*) ~ Hq+l(C*) ~ 

Passing from a cochain complex to a chain complex by changing the 
sign of the degree gives us the following analogues of theorems 5.2.14 and 
5.3.3. 

I THEOREM Given a cochain complex C * and a module G such that 
C* * G is acyclic, there is a functorial short exact sequence 

o ~ Hq(C*) Q9 G ~ Hq(C* Q9 G) ~ Hq+1(C*) * G ~ 0 

and this sequence is split. • 
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2 THEOREM Given cochain complexes C * and C' * such that C * * C' * 
is an acyclic cochain complex, there is a functorial short exact sequence 

o ~ [H*(C*) Q9 H*(C'*)]q ~ Hq(C* Q9 C'*) ~ 

[H*(C*) * H*(C'*)]q+1 ~ 0 

and this sequence is split. • 

There is also an analogue of corollary 5.3.4 for cochain complexes which 
we shall not state as a separate theorem. If C* is a co chain complex over R 
and G is an R module, an augmentation of C * over G is a monomorphism 
'I): G ~ Co such that {)O 0 'I) = O. An augmented cochain complex over G con­
sists of a nonnegative cochain complex C* (that is, Cq = 0 for q < 0) and an 
augmentation of C * over G. Such an augmentation can be regarded as 
a monomorphic chain map of the cochain complex (also denoted by G) whose 
only nontrivial cochain module is G in degree 0 to C*. For this trivial 
cochain complex G it is clear that Hq(G) = 0 for q 7'= 0 and HO(G) = G. 
Therefore 'I) induces a monomorphism 'I) *: G ~ HO( C *). The reduced 
cochain complex C * of an augmented co chain complex C * is defined to be 
the quotient cochain complex Cq = Cq for q 7'= 0, Co = coker 'I), and Bq is 
suitably induced by {)q. We define H( C *) = H( C *). Because there is a short 
exact sequence of cochain complexes 

o ~ G 4 C* ~ C* ~ 0 

we see that Hq( C *) ~ Hq( C *) for q 7'= 0, and there is a short exact sequence 

o ~ G ~ HO(C*) ~ [jO(C*) ~ 0 

Our interest in cochain complexes is in their relation to chain complexes. 
If C is a chain complex over R and G is an R module, there is a cochain 
complex Hom (C,G) = {Hom (Cq,G), {)q}, where, if f E Hom (Cq,G), then 
{)qf E Hom (Cq+1,G) is defined by 

We also write < f,c) instead of f(c) and set < f,c) = 0 if deg f 7'= deg c. 
In this notation < 8qf,c) = < f,aq+1C). 

If C is augmented bye: Co ~ G', then Hom (C,G) is augmented by 
'I): Hom (G',G) ~ Hom (Co,G), where 'I)(f)(c) = f(e(c)) for c E Co and 
f E Hom (G',G). It is easy to verify the following result. 

3 THEOREM There is a functor of two arguments contravariant in chain 
complexes C and covariant in modules G which assigns to a chain complex C 
and module G the cochain complex Hom (C,G). • 

For a chain complex C and module G we define the cohomology module 
H*(C;G) = {Hq(C;G)} ofCwithcoefficients Gby 
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Hq(C;G) = Hq(Hom (C,G)) 

It follows from theorem 3 that H * (C; G) is a contravariant functor of C and a 
covariant functor of G to the category of graded modules. For a chain map 
7": C ~ C' we use 7" * : H * (C'; G) ~ H * (C; G) to denote the homomorphism 
induced by the co chain map Hom (7",1): Hom (C',G) ~ Hom (C,G), and for a 
homomorphism <p: G ~ G' we use <p*: H*(C;G) ~ H*(C,G') to denote the 
homomorphism induced by the cochain map Hom (1,<p): Hom (C,G) ~ 
Hom (C,G'). To distinguish the homology of C from its cohomology, we shall 
sometimes denote H(C;G) by H* (C;G). 

4 EXAMPLE Given an abelian group G and a simplicial pair (K,L), the 
oriented cohomology group of (K,L) with coefficients G, denoted by 
H* (K,L; G), is defined to be the graded cohomology group of the cochain 
complex Hom (C(K)jC(L), G) [which is augmented over Hom (Z,G) ;:::;: G]. 
Then H * (K,L; G) is a contravariant functor of (K,L) and a covariant functor 
of G to the category of graded abelian groups. If G is also an R module, 
H* (K,L; G) is a graded R module. 

S EXAMPLE If (X,A) is a topological pair and G is an abelian group, the 
singular cohomology group of (X,A) with coefficients G, denoted by 
H* (X,A; G), is defined to be the graded cohomology group of the cochain 
complex Hom (~(X)j ~(A), G) (which is augmented over G). It is contravariant 
in (X,A) and covariant in G, and if G is an R module, H* (X,A; G) is a graded 
R module. If (X',A') C (X,A) and u E H* (X,A; G), we use u I (X',A') to denote 
the element of H* (X',A'; G) equal to i * u, where i: (X',A') C (X,A). We also 
use 1 E HO(X;R) to denote the image of 1 E R under the augmentation 
1/: R ~ HO(X;R). 

We recall some properties of the functor Hom. The following analogue 
of corollary 5.1.6 is easily established. 

6 LEMMA Given an exact sequence of R modules 

A' ~ A~A" ~ 0 

and an R module B, there is an exact sequence 

o ~ Hom (A",B) ~ Hom (A,B) ~ Hom (A',B) • 

If A' ~ A is a monomorphism [that is, if 0 ~ A' ~ A is also exact], it 
need not be true that Hom (A,B) ~ Hom (A',B) is an epimorphism, [that is, 
that Hom (A,B) ~ Hom (A',B) ~ 0 is exact]. However, there is the following 
analogue of corollary 5.1.12 (which follows easily by using lemma 5.1.11). 

7 LEMMA Given a split short exact sequence of R modules 

o ~ A' ~ A ~ A" ~ 0 

and an R module B, the sequence 
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o ~ Hom (A",B) ~ Hom (A,B) ~ Hom (A',B) ~ 0 

is a split short exact sequence. • 

In case 0 ~ C' ~ C ~ C" ~ 0 is a split short exact sequence of chain 
complexes, it follows from lemma 7 that for any module G there is a short 
exact sequence of cochain complexes 

o ~ Hom (C",G) ~ Hom (C,G) ~ Hom (C',G) ~ 0 

This gives the following result. 

8 THEOREM Given a split short exact sequence of chain complexes 

o ~ C' ~ C ~ C" ~ 0 

and a module G, there is a functorial exact cohomology sequence 

... ~ Hq(C";G) ~ Hq(C;G) ~ Hq(C';G) ~ Hq+I(C";G) ~ . .. • 

This leads to an exact Mayer- Vietoris cohomology sequence analogous to 
the exact sequence of corollary 5.1.14. 

9 COROLLARY If {(XI,A I ), (Xz,Az)} is an eXClswe couple of pairs in a 
topological space and G is an R module, there is a functorial exact cohomology 
sequence 

... ~ Hq(XI U X 2 , Al U A 2 ; G) i."'o, Hq(XI, AI; G) <:B Hq(X2,A2 ; G) i4 

Hq(XI n Xz, Al n A z; G) ~ ... 

where j* (u) = ut (u), j: (u)) and i* (Ul + U2) = it Ul - i: U2 and il, i2, jl, 
and j2 are suitable inclusion maps. • 

If {Xj} is the set of path components of X, then ~(X) = ffi ~(Xj). 
Therefore Hom (~(X);G) = Xj Hom (~(Xj),G), and by theorem 4.1.6, we ob­
tain the following result. 

10 THEOREM The singular cohomology module of a space is the direct 
product of the singular cohomology modules of its path components. • 

Because the homology functor does not commute with inverse limits, it is 
not true that the singular cohomology of a space is isomorphic to the inverse 
limit of the singular cohomology of its compact subsets (that is, there is no 
general cohomology analogue of theorem 4.4.6). 

There is an exact cohomology sequence corresponding to a short exact 
sequence of coefficient modules (analogous to theorem 5.2.7). 

II THEOREM On the category of free chain complexes Cover R and short 
exact sequences of R modules 

o ~ G' ~ G ~ G" ~ 0 
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there is a functorial connecting homomorphism 

13*: H*(C;G") ~ H*(C;G') 

of degree 1 and a functorial exact sequence 
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... ~ Hq(C;G') '1':4 Hq(C;G) ~ Hq(C;G") ~ Hq+l(C;G') ~ 

PROOF Because C is free, there is a short exact sequence of cochain complexes 

o ~ Hom (C,GJ ~ Hom (C,G) -i. Hom (C,G") ~ 0 

where <p and \It are induced by cp and 1/;. The result follows from this. • 

The connecting homomorphism 13 * in theorem 11 is called the Bockstein 
cohomology homomorphism corresponding to the coefficient sequence 
o ~ G' .!4 G -4 Gil ~ O. 

Let G be an R module. A cohomology theory with coefficients G consists 
of a contravariant functor H* = {Hq} from the category of topological pairs 
to graded R modules and a natural transformation 8 *: H* (A) ~ H* (X,A) of 
degree 1 such that the following axioms hold. 

12 HOMOTOPY AXIOM If fo, h: (X,A) ~ (Y,B) are homotopic, then 

H*(fo) = H*(h): H*(Y,B) ~ H*(X,A) 

13 EXACTNESS AXIOM For any pair (X,A) with inclusion maps i: A C X and 
i: X C (X,A), there is an exact sequence 

... ~ Hq(X,A) Hq(j\ Hq(X) Hq(i) Hq(A) ~ Hq+l(X,A) ~ ... 

14 EXCISION AXIOM For any pair (X,A) if U is an open subset of X such 
that 0 C int A, then the excision map;: (X - U, A - U) C (X,A) induces 
an isomorphism 

H*(;): H*(X,A):::::; H*(X - U, A - U) 

15 DIMENSION AXIOM On the category of one-point spaces there is a natural 
equivalence of the constant functor G with the functor H * . 

Singular cohomology theory with coefficients G is an example of a coho­
mology theory with coefficients G (the exactness axiom following from the 
application of corollary 9 to a suitable couple). The uniqueness theorem is 
valid for cohomology theories (that is, a homomorphism from one cohomology 
theory to another which is an isomorphism for one-point spaces is an isomor­
phism for compact polyhedral pairs). 

The reduced cohomology modules il * of a cohomology theory are 
defined as follows. If X is a nonempty space, let c: X ~ P be the unique map 
from X to some one-point space P. The reduced module il* (X) is defined to 
be the cokernel of the homomorphism 

H*(c): H*(P) ~ H*(X) 

Because c has a right inverse, H*(c) has a left inverse. Therefore 
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H* (X) ;:::; H* (X) EEl H* (P) 

and the reduced modules have properties similar to those of the reduced 
singular cohomology modules. 

5 THE UNIVERSAL-COEFFICIENT THEOREM 
FOR COHOMOLOGY 

This section is devoted to relations between cohomology and homology of 
chain complexes. In order to express the cohomology of a chain complex in 
terms of its homology it is necessary to introduce certain functors of modules 
which are associated to the module of homomorphisms of one module to 
another in much the same way that the torsion products are associated to the 
tensor product. Over a principal ideal domain there is one associated functor, 
the module of extensions. We use this to formulate the universal-coefficient 
theorems and Kiinneth formulas established in the section. 

Let C be a free resolution of the module A and let B be a module. There 
is a cochain complex Hom (C,B) = {[Hom (C,B)]q = Hom (Cq,B), 8q} whose 
cohomology module depends only on A and B, up to canonical isomorphism 
(and not on the choice of C). Let C be the canonical free resolution of A and 
define Extq (A,B) = Hq(Hom (C,B)). Then Extq (A,B) is a functor of two 
arguments contravariant in A and covariant in B, and ExtO (A,B) is naturally 
equivalent to Hom (A,B). 

For the rest of this section we assume R is a principal ideal domain. Then, 
Extq (A, B) = 0 for q> 1, and the module of extensions Ext (A, B) is defined to 
equal ExF (A, B). It is characterized by the property that given any free presenta­
tion of A 

there is an exact sequence 

o -? Hom (A,B) -? Hom (Co,B) Hom (a"I) Hom (C1,B) -? Ext (A,B) -? 0 

In fact, because Hom (C2,B) = 0, 

Ext (A,B) = H1(C;B) = Hom (C1,B)/im [Hom (hI)] 
= coker [Hom (01,1)] 

Clearly, Ext (A,B) is contravariant in A and covariant in B. Its name derives 
from its connection with the extensions of B by A which we describe briefly 
after the following examples. 

I If A is free, it has the free presentation 

O-?O-?A-?A-?O 

from which it follows that Ext (A,B) = 0 for any B. 
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2 For v E R, v =;6 0 there is a short exact sequence 

o~ R~ R~RlvR~ 0 

where a(v') = vv' for v' E R, which is a free presentation of R/vR. For any 
R module B, Hom (R,B) ;::::: B and the homomorphism Hom (a, I): Hom (R,B) ~ 
Hom (R,B) corresponds to a*: B ~ B, where a* (b) = vb. Hence there is an 
isomorphism coker Hom (a,l) ;::::: BlvB, and we have proved 

Ext (RlvR,B) ;::::: BlvB ;::::: (RlvR) ® B 

Since Hom commutes with finite direct sums, it follows that for any finitely 
generated torsion module A there is an isomorphism (nonfunctorial) 

Ext (A,B) ;::::: A ® B 

because such a module A is a finite direct sum of cyclic modules (by theorem 
4.14 in the Introduction). 

An extension of B by A is a short exact sequence 

O~B~E~A~O 

With a suitable definition of equivalence of extensions (by a commutative 
diagram), of the sum of two extensions, and of the product of an extension 
by an element of R, there is obtained a module whose elements are equiva­
lence classes of extensions of B by A. This module is isomorphic to Ext (A,B). In 
fact, given an extension 0 ~ B ~ E ~ A ~ 0 and a free presentation of A, 
o ~ C1 ~ Co ~ A ~ 0, there is, by theorem 5.2.1, a commutative diagram 

o ~ C 1 ~ Co 

'I'1~ 'I'O~ 

o ~ B ~ E 

uniquely determined up to chain homotopy. Then <P1 E Hom (Ct.B) is unique 
up to im [Hom (Co,B) ~ Hom (C1,B)], and so determines an element of 
Ext (A,B). This function from extensions of B by A to Ext (A,B) induces an 
isomorphism of the module of equivalence classes of extensions with Ext (A,B). 

Given a graded module C = {Cq}, there is a graded module Ext (C,B) = 
{[Ext (C,B)]q = Ext (Cq,B)). If C is a chain complex, Ext (C,B) is a cochain 
complex with 

l)q = Ext (OH1,1): Ext (Cq,B) ~ Ext (CHt.B) 

A homomorphism 

h: Hq(C;G) ~ Hom (Hq(C;G'), G ® G') 

natural in C and G is defined by 

(h{f}){~ Ci ® gi} = ~f(ci) ® gi 
for {f} E Hq(C;G) and {~Ci ® gil E Hq(C;G') [after verification that 
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~ f( Ci) ® gi is independent -of the choice of f in its cohomology class 
and ~ Ci ® gi in its homology class]. For u E Hp(C;G) and z E Hq(C;G') we 
define < u,z) E G ® G' to be 0 if P * q and to be h( u)(z) if P = q. In this 
notation 

< {f}, {L Ci ® gi}) = L <f,ci) ® gi 

The homomorphism h enters in the following universal-coefficient 
theorem for cohomology. 

3 THEOREM Given a chain complex C and module G such that Ext (C,G) 
is an acyclic cochain complex, there is a functorial short exact sequence 

o -? Ext (Hq-1(C),G) -? Hq(C,G) ~ Hom (Hq(C),G) -? 0 

and this sequence is split. 

PROOF We first consider the case in which C is a free chain complex. There 
is then a short exact sequence of chain complexes 

O-?Z-?C-?B-?O 

where Zq = Zq(C) and Bq = Bq-1(C). This sequence is split because B is free, 
and by theorem 5.4.8, there is an exact cohomology sequence 

... -? Hq-l(Z;G) ~ Hq(B;G) -? Hq(C;G) -? Hq(Z;G) ~ HHl(B;G) -? ... 

Since Z and B have trivial boundary operators, Hq(Z;G) = Hom (Zq(C),G) 
and Hq(B;G) = Hom (Bq-1(C),G). Furthermore, the homomorphism 

8*: Hq(Z;G) -? Hq+l(B;G) 

equals Hom (Yq,l): Hom (Zq(C),G) -? Hom (Bq(C),G), where Yq: Bq(C) C Zq(C). 
Hence there is a functorial short exact sequence 

o -? coker [Hom (Yq_l,l)] -? Hq(C;G) -? ker [Hom (Yq,l)] -? 0 

To interpret the modules in the above sequence we have the short exact 
sequence 

o -? Bq(C) ~ Zq(C) -? Hq(C) -? 0 

which is a free presentation of Hq(C). By the characteristic property of Ext, 
there is an exact sequence 

o -? Hom (Hq(C),G) -? Hom (Zq(C),G) Hom (YG,I) 

Hom (Bq(C),G) -? Ext (Hq(C),G) -? 0 

Therefore, ker [Hom (Yq,l)] :::::: Hom (Hq(C),G) and coker [Hom (Yq,l)] :::::: 
Ext (Hq(C),G). Substituting these into the short exact sequence containing 
Hq(C;G) yields the desired short exact sequence 

o -? Ext (Hq-l(C),G) -? Hq(C;G) -? Hom (Hq(C),G) -? 0 

with the homomorphism Hq(C;G) -? Hom (Hq(C),G) easily verified to equal h. 
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This sequence is functorial and is split (because the sequence of chain 
complexes 

O~Z~C~B~O 

is split). 
For arbitrary C such that Ext (C,G) is acyclic, the result follows by using 

a free approximation to C (as in the proof of theorem 5.2.14) to reduce it to 
the case of a free complex. -

It follows from theorem 3 that if X is a path-connected topological 
space, then HO(X; R) is a free R module generated by 1 [or, in other words, 
the augmentation map is an isomorphism '1/: R ::::; HO(X;R)J. From theorems 3 
and 5.4.10, it follows that for any X, HO(X;G) is isomorphic to the direct product 
of as many copies of G as path components of X. 

4 COROLLARY If (X,A) is a topological pair such that Hq(X,A;R) is finitely 
generated for all q, then the free sub modules of Hq(X,A; R) and Hq(X,A;R) 
are isomorphic and the torsion submodules of Hq(X,A; R) and Hq_1(X,A; R) 
are isomorphic. 

PROOF Let Hq(X,A; R) = Fq c:B Tq, where Fq is free and Tq is the torsion 
module of Hq. Then 

Hom (Hq(X,A; R), R) ::::; Hom (Fq,R) c:B Hom (Tq,R) ::::; Fq 

and by example 2, 

Ext (Hq(X,A; R), R) ::::; Ext (Fq,R) c:B Ext (Tq,R) ::::; Tq 

The result follows from theorem 3. -

For many purposes it would be more useful to have a formula expressing 
H* (C;G) in terms of H* (C;R). Such a formula can be proved in the case of 
C or G finitely generated. We begin by establishing some properties of 
finitely generated modules. 

Let p,: Hom (A,G) ® G' ~ Hom (A, G ® G') be the functorial homo­
morphism defined by ",(f ® g')(a) = f(a) ® g' for f E Hom (A,G), g' E G', 
and a EA. 

:; LEMMA If A is a free module and G' is finitely generated, then for any 
module G, '" is an isomorphism. 

PROOF The result is trivially true if G' = R. Because the tensor product and 
Hom functors both commute with finite direct sums, it is also true if G' is a 
finitely generated free module. G' is assumed to be finitely generated, so there 
is a short exact sequence 

O~ G~ G~ G'~O 
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where C (hence also G) is a finitely generated free module. There is a com­
mutative diagram 

Hom (A,G) ® C ---> Hom (A,G) ® G ---> Hom (A,G) ® G' ---> 0 

~1 ~1 ~1 

Hom (A, G ® G) ---> Hom (A, G ® G) ---> Hom (A, G ® G') ---> 0 

with exact rows (exactness follows from corollary 5.1.6 and, for the bottom 
row, from the fact that A is free). Because [l and il are isomorphisms, it 
follows from the five lemma that p, is also an isomorphism. -

There is also a functorial homomorphism 

p,: Hom (A,G) ® Hom (B,G') ---> Hom (A ® B, G ® G') 

defined by p,(f ® f')(a ® b) = f(a) ® f'(b) for f E Hom (A,G),f' E Hom (B,G'), 
a E A, and b E B. In case B = R, Hom (B,G') ::::::; G', and p, corresponds to 
the homomorphism in lemma 5. 

6 LEMMA If B is a finitely generated free module, for arbitrary modules 
A and G, p, is an isomorphism 

p,: Hom (A,G) ® Hom (B,R)::::::; Hom (A ® B, G) 

PROOF The result is trivially true for B = R and follows for a finite sum of 
copies of R because both sides commute with finite direct sums. -

7 COROLLARY If A and B are free modules and either A and B or Band G' 
are finitely generated, p, is an isomorphism 

p,: Hom (A,G) ® Hom (B,G')::::::; Hom (A ® B, G ® G') 

PROOF Since A and B are free, so is A ® B. If A and B are finitely gener­
ated, so is A ® B, and there is a commutative diagram 

[Hom (R,G) ® Hom (A,R)] ® [Hom (R,G') ® Hom (B,R)] E. Hom (R, G ® G') ® Hom (A ® B, R) 

M0M1 1M 
Hom (A,G) ® Hom (B,G') £. Hom (A ® B, G ® G') 

in which il((fl ® fz) ® (h ® f4)) = p,(ft ® h) ® p,(fz ® f4). By lemma 6, il 
is an isomorphism and so are both vertical maps. Therefore the bottom map 
is also an isomorphism. 

If Band G' are finitely generated, there is a commutative diagram 

Hom (A,G) ® Hom (B,R) ® G' ~ Hom (A,G) ® Hom (B,G') 

/'® 11 11' 
Hom (A ® B, G) ® G' 4 Hom (A ® B, G ® G') 

By lemma 5, both horizontal maps are isomorphisms, and by lemma 6, the 
left-hand vertical map is an isomorphism. Therefore the right-hand map 
is also an isomorphism. -
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It follows from lemma 5 that if A is free and finitely generated, /1 is an 
isomorphism 

/1: Hom (A,R) ® A ;:::; Hom (A,A) 

The following lemma is a partial converse of this result. 

8 LEMMA If A is a module such that 

/1: Hom (A,R) ® A -0 Hom (A,A) 

is an epimorphism, then A is finitely generated. 

PROOF By hypothesis, there exist fi E Hom (A,R) and ai E A for 1 :::; i :::; n 
such that /1('2: fi ® ail = lAo Then, for any a E A 

a = /1('2: fi ® ai)(a) = '2: fi(a)ai 

showing that A is generated by {ai}. • 

A graded module {Cq } is said to be of finite type if Cq is finitely gener­
ated for every q. Thus a graded module C of finite type is finitely generated 
(as a graded module) if and only if Cq = 0, except for a finite set of integers q. 
The following lemma asserts that a chain complex whose homology is of 
finite type can be approximated by a chain complex of finite type. 

9 LEMMA Let C be a free chain complex such that H( C) is of finite type. 
Then there is a free chain complex C' of finite type chain equivalent to C. 

PROOF For each q let Fq be a finitely generated submodule of Zq(C) such 
that Fq maps onto Hq(C) under the epimorphism Zq(C) -0 Hq(C). Let F~ be 
the kernel of the epimorphism Fq -0 Hq(C). Define a chain complex 
C' = {C~,O~} byC~ = Fq E8F~_landaq(c,c') = (c',O)forc E Fq and c' E F~-l' 
Then C' is a free chain complex of finite type and Hq(C') = Fq/F~ ;:::; Hq(C). 
To define a chain equivalence T: C' -0 C, choose for each q a homomorphism 
<pq: F~ -0 Cq+1 such that OQ+l<Pq(C') = c' for c' E F~. Then define T by T(C,C') = 
C + <Pq-l(C') for c E Fq and c' E F~-l' T is a chain map and induces an isomor­
phism T*: H(C') ;:::; H(C). Because C' and C are both free, it follows from 
theorem 4.6.10 that T is a chain equivalence. • 

We are now ready for the universal-coefficient theorems toward which 
we have been heading. 

10 THEOREM Let C be a free chain complex and G be a module such that 
either H( C) is of finite type or G is finitely generated. Then there is a func­
torial short exact sequence 

0-0 Hq(C;R) ® G ~ Hq(C;G) -0 Hq+l(C;R) * G -0 0 

and this sequence is split. 

PROOF If G is finitely generated, it follows from lemma 5 that 

wHom (C,R) ® G;:::; Hom (C,G) 
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Because Hom (C,R) is without torsion, Hom (C,R) * G = 0, and the result 
follows from theorem 5.4.1. 

If H(C) is of finite type, we use lemma 9 to replace C by a free chain 
complex C' of finite type. By corollary 7, p.: Hom (C',R) ® G;::::: Hom (C,G), 
and the result again follo~s for C' (and hence for C) from theorem 5.4.1. • 

In a similar way we obtain the following Kilnneth formula for cohomology. 

11 THEOREM Let C and C' be nonnegative free chain complexes and G and 
G' be modules over a principal ideal domain such that G * G' = 0 and either 
H(C) and H(C') are of finite type or H(C') is of finite type and G' is finitely 
generated. Then there is a functional short exact sequence 

0---') [H*(C;G) ® H*(C';G')]q ---') Hq(C ® C'; G ® G') ---') 

[H* (C;G) * H* (C';G')]q+1 ---') 0 

and this sequence is split. 

PROOF If H(C) and H(C') are of finite type, by lemma 9, we can replace C 
and C' by free chain complexes of finite type. Hence we are reduced to 
proving the result for the case where C and C' have finite type or where C' 
has finite type and G' is finitely generated. By corollary 7, there is an isomor­
phism p.: Hom (C,G) ® Hom (C',G') ;::::: Hom (C ® C', G ® G'). The result 
will now follow from theorem 5.4.2 as soon as we have verified that 
Hom (C, G) * Hom (C', G') is acyclic. 

We show that Hom (C,G) * Hom (C',G') = O. In case C and C' are both 
of finite type, Hom (Cp , G) is isomorphic to a finite direct sum of copies of G 
and Hom (C~,G') is isomorphic to a finite direct sum of copies of G'. Because 
G * G' = 0 by hypothesis, Hom (Cp,G) * Hom (C~,G') = 0, and so 
Hom (C,G) * Hom (C',G') = 0 in this case. 

In case C' is of finite type, Hom (C~,G') is isomorphic to a finite direct 
sum of copies of G'. Hence it suffices to show that Hom (C, G) * G' = 0 if G' 
is finitely generated. Let 

o ---') G ---') G ---') G' ---') 0 

be a free resolution of G' with G finitely generated. Because G * G' = 0, 
there is a short exact sequence 

o ---') G ® G ---') G ® G ---') G ® G' ---') 0 

and a short exact sequence of cochain complexes (because C is free) 

o ---') Hom (C, G ® G) ---') Hom (C, G ® G) ---') Hom (C, G ® G') ---') 0 

Using lemma 5, this implies the exactness of the sequence 

0---') Hom (C,G) ® G ---') Hom (C,G) ® G ---') Hom (C,G) ® G' ---') 0 

Hence Hom (C,G) * G' = 0, and so Hom (C,G) * Hom (C',G') = 0 in either 
case. • 
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If A is a free finitely generated module, then 

A ;:::::: Hom (Hom (A,R), R) 

Since Hom (A,R) is also free and finitely generated, it follows from corollary 7 
that 

A ® G ;:::::: Hom (Hom (A,R), R) ® Hom (R,G) ;:::::: Hom (Hom (A,R), G) 

We use this to express homology in terms of cohomology. 

12 THEOREM Let C be a free chain complex such that H( C) is of finite 
type. For any module G there is a functorial short exact sequence 

o ~ Ext (Hq+1(C;~), G) ~ Hq(C;G) ~ Hom (Hq(C;R), G) ~ 0 

and this sequence is split. 

PROOF By lemma 9, we are reduced to the case where C is of finite type. 
Then C ® G ;:::::: Hom (Hom (C,R), G), and the result follows, by theorem 3, 
on changing Hom (C,R) to a chain complex by changing the sign of the 
degree. • 

The following result is a version of lemma 8 valid for homology that is a 
partial converse to theorem 10. 

13 THEOREM Let C be a free chain complex such that for every module G 
the map t-t: Hom (C,R) ® G ~ Hom (C,G) induces isomorphisms of all coho­
mology modules. Then H* (C) is of finite type. 

PROOF Because t-t: Hq(Hom (C,R) ® Hq(C)) ;:::::: Hq(Hom (C,Hq(C))), it follows 
from theorem 3 that there exist fi E Hom (Cq,R) and Zi E Hq(C) such that 
ht-t(~ fi ® zd·= 1Hq(C). Then, for any Z E Hq(C) we have 

Z = <t-t(~fi ® Zi}, z) = ~ <fioz)zi 

showing that Hq( C) is generated by Zi. • 

Note that if the short exact sequence of theorem 10 is valid for a given C 
for all G, then the hypothesis of theorem 13 is satisfied, and so H(C) is 
of finite type. 

6 CUP AND CAP PRODUCTS 

There is a cross product of cohomology classes from the tensor product of the 
cohomology of two spaces to the cohomology of their product space. By 
using the diagonal map of a space into its square, the cross product gives rise 
to a product in the cohomology module of a space. This multiplicative struc­
ture provides cohomology with more structure than just the essentially additive 
module structure. In this section we shall define these products and establish 
some of their elementary properties. 
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If {X X B, A X Y} is an excisive couple in X X Y, there is a cohomology 
cross product 

p,': Hp(X,A; G) Q9 Hq(Y,B; G') ~ Hp+q((X,A) X (Y,B); G ® G') 

induced by the functorial homomorphism 

Hom (d(X)/d(A),G) (8l Hom (d(Y)/d(B),G') 

I't 
Hom ([d(X)/d(A)] ® [d(Y)/d(B)], G ® G') 

followed by an Eilenberg-Zilber cochain equivalence of the bottom module 
with Hom (d(X X Y)/d(X X B U A X Y), G Q9 G'). If u E Hp(X,A; G) and 
v E Hq(Y,B; G'), we define 

u X v = p,'(u Q9 v) E Hp+q((X,A) X (Y,B); G Q9 G') 

From theorem 5.5.11 we obtain the following Kiinneth formula for 
singular cohomology. 

I THEOREM Let {X X B, A X Y} be an excisive couple in X X Y and 
let G and G' be modules such that G * G' = O. If H* (X,A; R) and H* (Y,B; R) 
are of finite type or if H* (Y,B; R) is of finite type and G' is finitely generated, 
there is a functorial short exact sequence 

o ~ [H* (X,A; G) (8l H* (Y,B; G')]q 4 Hq((X,A) X (Y,B); G (8l G') ~ 

[H* (X,A; G) * H* (Y,B; G')]q+1 ~ 0 

and this sequence is split. • 

The cohomology cross product satisfies the following analogues of state­
ments 5.3.11 to 5.3.15. 

2 Let f: (X,A) ~ (X',A') and g: (Y,B) ~ (Y',B') be maps and let 
u' E HP(X',A'; G) and v' E Hq(Y',B'; G'). Then, in Hp+q((X,A) X (Y,B); G ® G'), 
we have 

(f X g)* (u' X v') = f* u' X g * v' • 

3 Let p: (X,A) X Y ~ (X,A) be the protection to the first factor and let 
1/: G' ~ H*(Y;G') be the augmentation map. For u E Hq(X,A; G), in 
Hq((X,A) X Y; G ® G'), we have 

p* (p,(u ® g'» = u X 1/(g') • 

4 For u E Hp(X,A; G), v E Hq(Y,B; G'), and w E Hr(Z,C; G If ), in 
HP+q+r((X,A) X (Y,B) X (Z,C); G ® G' ® G If ), we have 

u X (v X w) = (u X v) X w I:! 

:. Let T: (X,A) X (Y,B) ~ (Y,B) X (X,A) and qJ: G ® G' ~ G' ® G 
interchange the factors. For u E HP(X,A; G) and v E Hq(Y,B; G'), in 
Hp+q((X,A) X (Y,B); G' ® G), we have 
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T*(v Xu) = (-l)pq<p*(u X v) • 

6 Let {(Xl,Al ), (X2,A2 )} be an excisive couple of pairs in X and let 
u E Hp(Xl n X2 , Al n A2 ; G) and v E Hq(Y,B; G'). For the connecting 
homomorphisms of appropriate Mayer- Vietoris sequences we have 

8*(u X v) = 8*u X v 

in HP+q+l((Xl U X2 , Al U A 2 ) X (Y,B); G ® G') and 

8*(v X u) = (-l)qv X 8*u 

in Hp+q+l((Y,B) X (Xl U X 2 , Al U A 2 ); G' ® G). • 

Consider the twu functors il(X) and il(X) ® il(X) on the category of 
topological spaces. Because il(X) is free with models {ilq }Q2 0 and il(X) ® il(X) 
is acyclic with models {ilQ}q20 [that is, the reduced complex of il(M) ® il(ilq) 
is acyclic for all q], it follows from the acyclic-model theorem 4.3.3 that 
there exist functorial chain maps 7*: il(X) ~ il(X) ® il(X) preserving aug­
mentation, and any two are chain homotopic. Such a functorial chain map is 
called a diagonal approximation. The name stems from the fact that if 
7X: il(X X X) ~ il(X) ® ~(X) is a functorial chain equivalence given by the 
Eilenberg-Zilber theorem and d: X ~ X X X is the diagonal map, then the 
composite 

il(X) 6.(d\ il(X X X) ~ il(X) ® il(X) 

is a diagonal approximation. 
We construct a particular diagonal approximation called the Alexander­

Whitney diagonal approximation. If a: ilq ~ X is a singular q-simplex, the 
front i-face ia is defined for 0 ::; i ::; q to equal the composite a 0 A, where 
A: ili ~ ilq is the simplicial map defined by A(pj) = pj for 0 ::; i ::; i. Similarly, 
the back i-face ai is defined for 0 ::; i ::; q to equal the composite a 0 A.', 
where A': ili ~ ilq is the simplicial map defined by A'(Pj) = Pj+q-i for 
o ::; i ::; i. It is easy to verify that 

7( a) = L ia ® aj 
i+j=dego 

defines a functorial chain map 7: il(X) ~ il(X) ® il(X), and this chain map is 
the Alexander-Whitney diagonal approximation. 

Let G and G' be R modules. A pairing of G and G' to an R module G" 
is a homomorphism <p: G ® G' ~ G". For example, G and G' are always 
paired to G ® G'. Given such a pairing and given a diagonal approximation 
7, there is a functorial cochain map 

fx: Hom (il(X),G) ® Hom (il(X),G') ~ Hom (il(X),G") 

defined to equal the composite 

Hom (il(X),G) ® Hom (il(X),G') 4 

Hom (il(X) ® il(X), G ® G') Hom (TX'<p\ Hom (il(X),G") 
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If A C X, then for f E Hom (L\(X),G) and f' E Hom (L\(X),G'), we have 

Tx(f ® J') I L\(A) = TA(f I L\(A) ® J' I L\(A)) 

If A!, A2 C X and f vanishes on A!, J' vanishes on A 2 , it follows that 
Tx(f ® f') vanishes on L\(A 1) + L\(A2). If {A 1,A2} is an excisive couple in X, 
it follows that TX induces a homomorphism 

Hp(X,Al; G) ® Hq(X,A 2; G') ---? Hp+q(X, Al U A 2; G") 

which is called the cup-product homomorphism. If u E Hp(X,Al; G) and 
v E Hq(X,A2; G'), their cup product is denoted by 

u v v E Hp+q(X,Al U A 2; G") 

This product is a bilinear function of u and v and depends on the pairing cp 
but not on the particular diagonal approximation. The Alexander-Whitney 
diagonal approximation yields a particular map T which defines a cup product 
of cochains f v J' for f E Hom (L\p(X),G) and J' E Hom (L\q(X),G') by 

(f v J')(o) = cp(f(po) ® J'(Oq)) 

Then {f} v {f'} = {f v J'} in Hp+q(X, Al U A 2; G"). 
As pOinted out above, there exist diagonal approximations which are 

factored through L\(d). This implies the following relation expressing the cup 
product in terms of the cross product. 

7 THEOREM [fIX X A2, Al X Xl is an excisive couple in X X X, if(Al,A21 is 
an excisive couple in X, and <p: G C8l G' -> Gil is a pairing, then for u E HP(X,Al; 
G) and v E Hq(X,A2; G'), in Hp+q(X, Al U A2; Gil), we have 

u v v = cp* (d * (u Xv)) • 

The cup product has the following properties analogous to the corre­
sponding properties of the cross product. 

8 Let f: X ---? Y map Al into Bl and A2 into B2 and let u E Hp(Y,B 1; G) 
and v E Hq(Y,B2; G'). Let fI: (X,Al) ---? (Y,Bl)' h: (X,A2) ---? (Y,B2), and 
f: (X, Al U A 2) ---? (Y, Bl U B2) be maps defined by f. In Hp+q(X, Al U A 2; G"), 
we have 

J* (u v v) = ft u v n v • 

9 For any u E Hq(X,A; G) with the pairings R ® G :::::: G :::::: G ® R we have 

10 Given a commutative diagram, where cp, cp', 1/;, and 1/;' are pairings, 

G1 ® (G2 ® G3 ) :::::: (G1 ® G2) ® G3 <p ® 1) G12 ® G3 

1 ® <p't Jf 



252 PRODUCTS CHAP. 5 

and given UI E Hp(X,AI; GI ), U2 E Hq(X,A2; G2), and U3 E Hr(X,A3; G3), 
then, in Hp+q+r(X, Al U A2 U A3; GI23), we have 

UI v (U2 v U3) = (UI v U2) V U3 • 

II Given a commutative diagram of pairings 

G(8) G':::::;G'(8) G 

\. .! 
Gil 

and given U E Hp(X,AI; G) and v E Hq(X,A2; G'), in Hp+q(X, Al U A2; Gil), 
we have 

U v v = (- 1 )pqv v U • 

12 Let {(XloAI)' (X2,A2)} be an excisive couple of pairs in X, let A C Xl U X2, 
and let i: (Xl n X2, A n Xl n X2) C (Xl U X2, A). For elements 
u E Hp(XI n X2, Al n A2; G) and v E Hq(X I U X2, A; G') and with the 
connecting homomorphisms of the appropriate Mayer- Vietoris sequences, in 
HP+q+I(XI U X2, Al U A2 U A; Gil), we have 

8*(u v i*v) = 8*u v v 
8*(i*vvu)=(-1)qvv8*u. 

Let T': ~(X X Y) -0 ~(X) (8) ~(Y) be a functorial chain equivalence 
given by the Eilenberg-Zilber theorem and let 

T: [~(X) (8) ~(Y)] (8) [~(X) (8) ~(Y)] -0 [~(X) (8) ~(X)] (8) [~(Y) (8) ~(Y)] 

be the chain map defined by 

T((c (8) d) (8) (c' (8) d')) = (_l)deg d deg c'(c (8) c') (8) (d (8) d') 

If T is any diagonal approximation, it follows by the method of acyclic models 
that the diagram 

~(X X Y) ~ ~(X X y) (8) ~(X X y) 

~(X) (8) ~(Y) TX(SSlT y ) [~(X) (8) ~(X)] (8) [~(Y) (8) ~(Y)] 

is chain homotopy commutative. This implies the following additional relation 
between cup products and cross products. 

13 THEOREM Let cp: G I ® G2 -0 G and G1 (8) G2 -0 G' be pairings and let 
G I (8) Gl and G 2 (8) G2 be paired to G (8) G' by the homomorphism 

(G I (8) Gl) (8) (G2 (8) G2):::::; (G I (8) G2) (8) (Gl (8) G2) rp@rp') G (8) G' 

Given UI E HP(X,AI; GI ), U2 E Hq(X,A2; G2), VI E Hr(Y,BI: Gl ), and 
V2 E HS(Y,B;; G2) then with suitable excisiveness assumptions, we have, in 
Hp+q+r+s((X, Al U A 2) X (Y, BI U B2); G (8) G'), 

(UI X V1) V (U2 X V2) = (_l)qr(UI v U2) X (VI v V2) • 
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Combining theorem 13 with statements 3 and 9, we obtain the following 
result expressing the cross product in terms of the cup products. 

14 COROLLARY Let {X X B, A X Y} be an excisive couple in X X Y and let 
Pl: (X,A) X Y ~ (X,A) and P2: X X (Y,B) ~ (Y,B) be the proiections. Given 
u E Hp(X,A; G) and v E Hq(Y,B; G'), then, in Hp+q((X,A) X (Y,B); G ® G'), 
we have 

Uxv=pt(u)vp~(v) • 

With the last result we can give the following example of two polyhedra 
having isomorphic homology and cohomology modules but not isomorphic 
cup-product structures. 

15 EXAMPLE Let p and q be integers ~ 1 and let X be the space which is 
the union of SP, Sq, and Sp+q, all identified at one point. If i: SP C X, i: Sq C X, 
and k: Sp+q C X, then i* H(SP) EEl i* H(sq) EEl k* H(Sp+q) ;::::: H(X). Computing 
H(Sp X Sq) by the Kiinneth formula, we see that H(X) ;::::: H(Sp X Sq). By the 
universal-coefficient theorem, X and sP X Sq have isomorphic homology and 
cohomology groups for any coefficient group. Since 

k*: Hp+q(X;Z) ;::::: Hp+q(sP+q;Z) 

and k * commutes with the cup product, it follows that the cup product of 
integral cohomology classes of degrees p and q, respectively, in X is zero. 
However, it follows from corollary 14 that there are integral cohomology 
classes of sP X Sq of degrees p and q, respectively, whose cup product is non­
zero. Therefore H* (X;Z) and H* (Sp X Sq; Z) are not isomorphic by an iso­
morphism of graded modules preserving the cup product. Hence X and 
SP X Sq are not homeomorphic, nor even of the same homotopy type. 

There is another product closely related to the cup product that multiplies 
homology and cohomology classes together. We begin with the observation 
that if C and C' are chain complexes and G and G' are paired to Gil by cp, 
there is a functorial homomorphism 

h: Hom (C',G) ® (C ® c' ® G') ~ C ® Gil 

such that h(f® (c ® c' ® g')) = c ® cp(J,c') ® g'). A straightforward calcu­
lation shows that for J E Hom (C'q,G) and c E (C ® C')n ® G' 

ah(f Q9 c) = (-1)n-qh(13J ® c) + h(f Q9 ac) 

If X is a space and '7": ~(X) ~ ~(X) ® ~(X) is a diagonal approximation, 
a functorial map 

f: Hom (~(X),G) Q9 (~(X) ® G') ~ ~(X) ® Gil 

is defined by f(f ® c) = h(f Q9 '7"(c)). The boundary formula yields 

af(f Q9 c) = (_1)deg c-deg ff(13J ® c) + f(f ® ac) 

Note that if A is a subset of X and J E Hom (~(X),G) vanishes on A, then for 
any c E ~(A) ® G', f(f Q9 c) = O. It follows that if A1, A2 C X, 
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f E Hom (Il(X)/ Il(Al),G) is a co cycle, and c E Il(X) ® G' is a chain such that 
ac E [1l(Al) + Il(A2)] ® G', then t(f ® c) is a cha~n of Il(X) ® Gil whose 
boundary is in Il(A2) ® Gil [because af(f ® c) = r(j ® ac)]. Furthermore, if 
f is the coboundary of a cochain which vanishes on Il(A 1) or if c equals 
a boundary modulo [1l(Al) + Il(A2)] ® G', then t(f ® c) is a boundary 
modulo Il(A2) ® Gil. Hence r defines a homomorphism [sending {f} ® {c} 
to {:r(f ® c)}] 

Hq(X,Al; G) ® Hn(~(X)/[~(Al) + ~(A2)]; G') ..... Hn-q(X,A2; Gil) 

If {Al ,A2 } is an excisive couple in X, this yields a homomorphism 

Hq(X,A 1 ; G) ® Hn(X, Al U A2; G') ~ Hn- q(X,A2; Gil) 

called the cap product. If u E Hq(X,A 1; G) and z E Hn(X, Al U A2; G'), their 
cap product is denoted by u r-, z E Hn_q(X,A2; Gil). It depends on the pairing 
cp but not on the particular diagonal approximation used to define :r. The 
Alexander-Whitney diagonal approximation yields a map T which defines a 
cap product on cochains and chains, denoted by f r-, c, by the formula 

f r-, c = f r-, (~(J ® g~) = ~n-q (J ® cp(f,(Jq) ® g~) 
a a 

for fE Hom (~q(X), G) and c = :EO" (F ® g;" E ~n(X) ® G'. Then If} _ {c} = 
{f_c}. 

The cap product has the following properties analogous to those of the 
cup product. 

16 Let f: X ~ Y map Al to Bl and A2 to B2 and let u E Hq(Y,B 1 ; G) and 
z E Hn(X, Al U A 2; G'). Let It: (X,Al) ~ (Y,B1), fz: (X,A 2) ~ (Y,B2), and 
f (X, Al U A2) ~ (Y, Bl U B2) be maps defined by f Then, in Hn- q(Y,B2; Gil), 
we have 

fz*(fT u r-, z) = u r-, f* z • 

17 For any z E Hn(X,A; G) with the pairing R ® G ;:::; G 

lr-,z=z • 

18 Given a commutative diagram, where cp, cp', 1/;, and 1/;' are pairings, 

G1 ® (G2 ® G3);:::; (G1 ® G2 ) ® G3 ~ G12 ® G3 

1 ® 'I"t ~o/ 

for u E Hv(X,Al; Gl ), V E Hq(X,A2; G2), and z E Hn(X, Al U A2 U A 3 ; G3), 

then, in Hn- v- q(X,A 3 ; G123), we have 

u r-, (v r-, z) = (u v v) r-, z • 

19 Let u E Hq(X,A; G) and z E Hq(X,A; G') and let e: Ho(X; G ® G') ~ 
G ® G' be the augmentation. Then, in G ® G', 
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c(u (\ z) = <u,z) • 

20 Let {(XI,A I ), (X2,A2)} be an excisive couple in X and let A C Xl U X2 and 
i: (Xl n X2, A n Xl n X2) C (Xl U X2, A). For u E Hq(XI U X2, A; G) and 
z E Hn(XI U X2, Al U A2 U A; G'), with the connecting homomorphisms of 
the appropriate Mayer- Vietoris sequences, in Hn-q-I(XI n X2, Al n A 2; Gil), 
we have 

a*(u (\ z) = i*u (\ a*z • 

21 Let UI E HP(X,AI; G I ), U2 E Hq(Y,B I; G2), Zl E Hm(X, Al U A2; Gi), and 
Z2 E Hn(X, BI U B2; Gz), and let G I and Gi be paired to G'{, G2 and Gz be 
paired to G2, and (G I ® G2) and (Gi ® Gz) be compatibly paired to Gl' ® G2. 
Then, in Hm+n_p_q((X,A2) X (Y,B2); G~' ® G2), we have 

(UI X U2) (\ (Zl X Z2) = (-l)p(n-q)(UI (\ Zl) X (U2 (\ Z2) • 

7 HOMOLOGY OF FIBER BUNDLES 

Cup and cap products are used in this section to study the homology of fiber 
bundles. We shall show that in case the cohomology of the total space maps 
epimorphically onto the cohomology of each fiber, the homology (or cohomol­
ogy) of the total space is isomorphic to the homology (or cohomology) of the 
product space of the base and the fiber. For orientable sphere bundles this 
leads to a proof of the exactness of the Thom-Gysin sequences, which will be 
applied in the next section to compute the cohomology rings of projective 
spaces. 

We begin with some algebraic considerations. Let M = {Mq} be a free 
finitely generated graded R module and let M * = {Mq = Hom (Mq,R)}. Let 
(X,A) be a topological pair and f: X -7 Y be a continuous map. Given 
a homomorphism (of degree 0) 8: M* -7 H*(X,A; R), there are homomor­
phisms (of degree 0) for any R module G 

<1>: H(X,A; G) -7 H(Y;G) ® M 
<p*: H*(Y;G) ® M* -7 H*(X,A; G) 

defined by <1>(z) = '2.d* (8(mf) (\ z) ® mi, where {md is a basis of M and 
{ mT} is the dual basis of M * (<I> is uniquely defined by this formula), and 
<I>*(u ® m*) = f*u v 8(m*). 

1 LEMMA With the notation above, if <I> is an isomorphism for G = R, 
then <I> and <I> * are isomorphisms for all R modules G. 

PROOF For each i let c t be a co cycle of Hom (~(X)/ ~(A);R) representing 
the class 8( mT ) and assume that mi (and hence also mT and cT ) have degree qi. 
Let T: ~(X)/ ~(A) -7 ~(Y) ® M be the homomorphism (of degree 0) defined by 

T(C) = '2. ~(f)(cT (\ c) ® mi , 
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An easy computation shows that 7' is a chain map and that the induced 
homomorphisms 

7'*: H*(X,A; G) ~ H*(i1(Y) ® M; G);:::; H*(Y;G) ® M 
7'*: H*(Y;G) ® M* ;:::; H*(Hom (i1(Y) ® M, G» ~ H*(X,A; G) 

equal <I> and <I>*, respectively. Since <I> is assumed to be an isomorphism for 
G = R, the chain map 7' induces an isomorphism of homology. The universal­
coefficient theorems for homology and cohomology then imply that <I> and <I>* 
are isomorphisms for all G. • 

A jiber-bundle pair with base space B consists of a total pair (E,E), a 
jiber pair (F,F), and a protection p: E ~ B such that there exists an open 
covering {V} of B and for each V E {V} a homeomorphism C]JV: V X (F,F) ~ 
(p-l(V), p-l(V) n E) such that the composite 

V X F .!4 p-l(V) ~ V 

is the projection to the first factor. If A C B, we let EA = p-l(A) and 
EA = p-l(A) n E, and if b E B, then (Eb,Eb) is the fiber pair over b. 

Following are some examples. 

2 For a space B and pair (F,F) the product-bundle pair consists of the total 
pair B X (F,F) with projection to the first factor. 

3 Given a bundle projection p: E -> B with compact fiber P, let E be the 
mapping cylinder of p and p: E -> B the canonical retraction. Then (E,E) is the 
total pair of a fiber-bundle pair over B with fiber (F,F), where F is the cone 
over P, and projection p. 

4 If ~ is a q-sphere bundle over B, then (EE,EE) is the total pair of a fiber­
bundle pair over B with fiber (Eq+1,Sq) and projection Pt= Et ~ B. 

Given a fiber-bundle pair with total pair (E,E) and fiber pair (F,F), 
a cohomology extension of the fiber is a homomorphism 0: H*(F,F; R) ~ 
H* (E,E; R) of graded modules (of degree 0) such that for each b E B the 
composite 

is an isomorphism. The following statements are easily verified. 

:; Let p: B X (F,F) ~ (F,F) be the protection to the second factor. Then 

0== p*: H*(F,F; R) ~ H*(B X (F,F); R) 

is a cohomology extension of the fiber of the product-bundle pair. • 

8 Let 0: H* (F,F; R) ~ H* (E,E; R) be a cohomology extension of the fiber 
of a fiber-bundle pair over B and let f: B' ~ B be a map. There is an induced 
bundle pair over B', with total pair (E' ,E') and fiber (F,F), and there is a map 
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f: (E',E') ~ (E,E) commuting with proiections. Then the composite 

H*(F,P; R) ~ H*(E,E; R) ~ H*(E',E'; R) 

is a cohomology extension of the fiber in the induced bundle. • 

7 Given a fiber-bundle pair over B with total pair (E,E), let the path com­
ponents of B be {Bj} and let (E;,Ej) be the induced total pair over Bj. 
A cohomology extension 8 of the fiber of the bundle pair over B corresponds 
to a family of cohomology extensions {8j} of the induced bundle pairs 
over Bj. • 

We now establish the local form of the theorem toward which we are 
heading. It shows that any cohomology extension of the fiber in a product­
bundle pair has homology properties as nice as the one given in statement 5 
above. 

8 LEMMA Let (F,P) be a pair such that H * (F,P; R) is free and finitely 
generated over R and let 8: H* (F,P; R) ~ H* (B X (F,P); R) be a cohomology 
extension of the fiber of the product-bundle pair. Then the homomorphisms 

IP: H*(B X (F,P); G) ~ H*(B;G) ® H*(F,P; R) 

IP*: H*(B;G) ® H*(F,F; R) ~ H*(B X (F,P); G) 

are isomorphisms for all R modules G. 

PROOF By lemma 1, it suffices to prove that IP is an isomorphism for G = R. 
If {Bj} is the set of path components of B, then 

H* (B X (F,P); R) ;:::; ffi H* (Bj X (F,P); R) 

and 

H* (B;R) ® H* (F,P; R) ;:::; ffi H* (Bj;R) ® H* (F,P; R) 

Therefore it suffices to prove the result for a path-connected space B. For 
such a B, R ;:::; HO(B;R). 

By the Kiinneth formula, H* (B X (F,P); R) ;:::; H* (B;R) ® H. (F,P; R). 
We define graded submodules Ns of H* (B;R) ® H* (F,P; R) by 

(Ns)q = EB Hi(B;R) ® Hj(F,P; R) 
i+j=q.j~s 

Then 

H* (B;R) ® H* (F,P; R) = No ::J Nl ::J ... ::J Ns ::J NS+l 

and Ns = 0 for large enough s. If u E HS(F,F; R), then 8(u) = 1 X ;\(u) + ii, 
where ii E ~+j=s.j<. Hi(B;R) ® Hj(F,P; R) and 8(u) I [b X (F,F)] = 1 X ;\(u). 
Because 8 is a cohomology extension of the fiber, ;\ is an automorphism of 
H* (F,P; R). Let z' E H.(F,P; R) and consider z X z' EN •. Then 

lP(z X z') = ~ p* (8(mf) 1""\ (z X z')) ® mi 
~ 

and if deg mi < s, then 8(mt) 1""\ (z X z') E Nl and p. (Nl ) = O. Therefore 
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~(z X z') ENs, and so ~ maps Ns into itself for all s. Because of the short 
exact sequences 

o ~ NS+l ~ Ns ~ Ns/NS+l ~ 0 

and the five lemma, it follows by downward induction on s that ~ is an iso­
morphism if and only if it induces an isomorphism of NS/N.Hl onto itself for 
all s. For z' E H..(F,F; R), computing ~(z X z') in Ns/NS+l' we obtain 

~(z X z') = ~ p* [(1 X A(mt) + mf) '" (z X z')] ® mi 
degmi;o,s 

= ~ p*[l X A(mf) '" (z X z')] ® mi 
deg mj=s 

because mf '" (z X z') E Nl and p* (Nl) = O. Now, by properties 5.6.21, 
5.6.19, and 5.6.17, 

~ p* [1 X A(mf) '" (z X z')] ® mi 
degmi=S 

= ~ z ® (A(mT),z')m; = z ® A*(z') 
deg mi=S 

where A * : H* (F,F; R) ~ H* (F,F; R) is the automorphism dual to A. Hence 
~(z X z') = z X A * (z') in NS/N.Hl' showing that ~ induces an isomorphism 
of N../Ns+l for all s. • 

The following Leray-Hirsch theorem shows that fiber-bundle pairs with 
cohomology extensions of the fiber have homology and cohomology modules 
isomorphic to those of the product of the fiber pair and the base. 

D THEOREM Let (E,E) be the total pair of a fiber-bundle pair with base B 
and fiber pair (F,F). Assume that H* (F,F; R) is free and finitely generated 
over R and that 0 is a cohomology extension of the fiber. Then the 
homo.morphisms 

~: H* (E,E; G) ~ H* (B;G) ® H* (F,F; R) 

~* : H*(B;G) ® H*(F,F; R) -+ H*(E,E; G) <I>*(u ® v) = p*(u) ~ 8(v) 

are isomorphisms (of graded modules) for all R modules G. 

PROOF By lemma 1, it suffices to prove the result for the map ~ in the case 
G = R. For any subset A C B let 0 A be the composite 

H* (F,F; R) ~ H* (E,E; R) ~ H* (EA,EA; R) 

Then OA is a cohomology extension of the fiber in the induced bundle over A. 
It follows from lemma 8 that if the induced bundle over A is homeomorphic 
to the product-bundle pair A X (F,P), then 

~A: H* (EA,EA; R) ;::; H* (A;R) ® H* (F,F; R) 

Hence ~v is an isomorphism for all sufficiently small open sets V. 
If Vand V are open sets in B, then {(Ev,Ev), (EV',EV')} is an excisive couple 

of pairs in E, and it follows from property 5.6.20 that ~v, ~V', ~vnV', 
and ~vuV' map the exact Mayer-Vietoris sequence of (Ev,Ev) and (EV',EV') into 
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the tensor product of the exact Mayer-Vietoris sequence of V and V' by 
H* (F,P; R). Since H* (F,P; R) is free over R, its tensor product with any exact 
sequence is exact. Therefore, if <l>v, <l>V', and <l>vnV' are isomorphisms, it follows 
from the five lemma that <l>vuv' is also an isomorphism. By induction, <l>uis an 
isomorphism for any U which is a finite union of sufficiently small open sets. Let 
ql be the collection of these sets. Since any compact subset of B lies in some 
element of "11, H* (B;R) :::::; lim~ {H* (U;R)} UE01' Also, any compact subset of E 
lies in Eu for some U E Gil, so H* (E,E; R) :::::; lim~ {H* (Eu,Eu; R)}. Because 
the tensor product commutes with direct limits and <I> corresponds to 
lim~ {<I>U}UE"lL under these isomorphisms, <I> is also an isomorphism. -

The above argument proves directly that <I> is an isomorphism for any 
coefficient module G. A similar argument does not appear possible for <I> * , 
because it is not true that H* (B;R) is isomorphic to the inverse limit 
lim~ {H* (U;R)}UE"lL' It should be noted that in theorem 9 we have said 
nothing about commutativity of <I> * with cup products, because it is not true, 
in general, that <I> * preserves cup products. 

We now specialize to the case of sphere bundles. Because 

r=/=q+l 
r=q+l 

if ~ is a q-sphere bundle, a cohomology extension of the fiber in ~ is an ele­
ment U E Hq+l(E~,E~; R) such that for any b E B, the restriction of U to 
(p-l(b), p-l(b) n E) is a generator of Hq+l(p-l(b), p-l(b) n E; R). Such a 
cohomology class is called an orientation class (over R) of the bundle. If 
orientations of the bundle exist, the bundle is called orientable. An oriented 
sphere bundle is a pair (~, U~) consisting of a sphere bundle ~ and an orientation 
class of U~ of ~. 

If U is an orientation class of ~ over Z and if 1 is the unit element of R, 
then p,( U (8) 1) is an orientation class of ~ over R. Therefore a sphere bundle 
orientable over Z is orientable over any R. 

If (~, U~) is an oriented sphere bundle over Band f: B' ~ B, then 
(f*~,f* U~) is an oriented sphere bundle over B' [wheref: (Ef*~,Ef*~) ~ (E~,E~) 
is associated to fl. 

From theorem 9 we get the following Thom isomorphism theorem. 

10 THEOREM Let (~, U~) be an oriented q-sphere bundle over B. There are 
natural isomorphisms for any R module G 

<I>~: Hn(E~,E~; G) :? Hn_q_1(B;G) 

<1>(* : Hr(B;G) ;:? Hr+q+1(E~,E~; G) 

<I>~(z) = p* (U~ r, z) 

<l>t(v) = p*v v U~ 

PROOF Let m and m* be dual generators of Hq+1(Eq+1,Sq; R) and 
Hq+1(Eq+l,Sq; R), respectively, and define a cohomology extension 8 by 
8(m *) = U~. Then <I>~ is the composite 

Hn(E(,E(; G) ~ Hn_q_1(B;G) (8) Hq+l(Eq+1,Sq;R) :::::; Hn_q_1(B;G) 

where the second map sends z ® m to z. By theorem 9, <I> is an isomorphism, 
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and so <I>~ is an isomorphism. A similar argument shows that <I>~* is an isomor­
phism. These isomorphisms are natural for induced bundles because of 
naturality properties of the cup and cap products. -

This result implies the exactness of the following Thom-Gysin sequences 
of a sphere bundle. 

II THEOREM Let (~, V~) be an oriented q-sphere bundle with base Band 
proiection P = pIE: E ~ B. For any R module G there are natural 
exact sequences 

... ~ Hn(E~;G) ~ Hn(B;G) ~ Hn_q_1(B;G) -4 Hn_l(E~;G) ~ ... 
p* . p* 'i' • . . . ~ Hr(B;G) ~ Hr(E~;G) ~ Hr-q(B;G) -4 HT+1(B;G) ~ ... 

in which 'I' ~ and 'I' ~ * have properties 

'I'~(v ~ z) = (-l)(q+1) deg v 'I'~* (v) ~ Z 
'1'.;* (VI v V2) = VI v 'I'~*(V2) 

PROOF There is a commutative diagram (with any coefficient module) 

. .. ~ Hn(E) ~ Hn(E) ~ Hn(E,E) ~ Hn- 1(E) ~ 

the top row of which is exact. Since p is a deformation retraction of E onto B, 
p* is an isomorphism. By theorem 10, <I>~ is an isomorphism. The desired se­
quence is obtained by defining 'I'~ = <l>d*p* -1 and p = 0<1>.;-1. Similarly, the 
cohomology sequence is defined by 'I' ~* = p* -Ii * <1>.;* and p* = <I>~* -18. 
We verify the formula for 'I'~. 

'I',,(v ~ z) = <l>d*p* -l(V ~ z) = <l>d* (p* (v) ~ p* -l(Z)) 
= <I>~(p*(v) ~ i*p* -l(Z)) = p*(V ~ [P*(v) ~ i*p* -l(Z)]) 
= p*(i*[Vvp*(v)] ~P* -l(Z)) 
= (_l)(q+1) deg v p* [;* <l>l (v) ~ p* -l(Z)] 
= (_l)(q+1)deg v'l'.;*(v) ~ Z -

Note that the isomorphisms <I> and <I> * of the Thorn isomorphism theorem 
depend on the choice of the orientation class V of the bundle. Therefore the 
homomorphisms p and 'I' and p* and 'I' * of the Thom-Gysin sequences also 
depend on the orientation class. In case B is path connected and V and V' 
are orientation classes of a sphere bundle over B, it follows from theorem 10 
that there is an element r E R such that 

V' = p*(r X 1) v V = r[p*(l) v V] 

If bo E B, then 

V' I (p-l(bo), p-l(bo) n E) = r[V I (p-l(bo), p-l(bo) n E)] 

Therefore we have the next result. 
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12 LEMMA Two orientation classes U and U' of a sphere bundle over 
a path-connected base space B are equal if and only if for some bo E B 

U I (p-l(bfj), p-l(bo) n E) = U' I (p-l(bo), p-l(bo) n E) • 

If B is not path connected, let {Bj} be the set of path components of B 
and let (E),Ej ) be the part of (E,E) over Bi . Then 

H*(E,E; R) = Xj H*(Ej,~; R) 

and we also obtain the following result. 

13 LEMMA Two orientation classes U and U' of a sphere bundle with base 
space B are equal if and only if for all b E B 

U I (p-l(b), p-l(b) n E) = U' I (p-l(b), p-l(b) n E) • 

In case R = Z2, then Hq+l(p-l(b), p-l(b) n E; Z2) ::::: Z2 for all b E B. 
Therefore this module has a unique nonzero element, and we obtain the fol­
lowing consequence of lemma 13. 

14 COROLLARY Any two orientation classes over Z2 of a sphere bundle are 
equal. • 

Thus, for R = Z2 the homomorphisms <1>, p, and 'I' and <1> * , p * , and 'I' * 
are all unique. 

The characteristic class Q< of an oriented q-sphere bundle (~, Uf,) is 
defined to be the element 

Q< = '1'<* (1) E Hq+l(B;R) 

This is functorial (that is, Qr*< = f* Q<). From the multiplicative properties of 
'I' < and '1'<* in theorem 11 we obtain the following equations. 

15 For Z E Hn(B;G) 

'¥«z) = Q< ,..., z 

and for v E W(B;G) 

We now investigate the existence of orientation classes for a sphere 
bundle. Let (X,X') be a pair and let {Ai}i EJ be an indexed collection of sub­
sets Ai C X. An indexed collection 

{ui E Hn(Ai' Ai n X'; G)}iEJ 

is said to be compatible if for all f, l' E J 

ui I (Ai n Ai', Ai n Ai' n X') = Ui' I (Ai n Ai" Ai n Ai' n X') 

The compatible collections {Ui} constitute an R module Hn( {Ai },X'; G). 
Clearly, the restriction maps 

Hn(X X'· G) -i> Hn(A· A· n X'. G) , , J' J , 
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define a natural homomorphism Hn(X,X'; G) ~ Hn( {Aj} ,X'; G). 

16 LEMMA Let (E,E) be a fiber-bundle pair with base B, proiection p: E ~ B, 
and fiber pair (F,F). Assume that for some n > 0, Hi(F,F; R) = 0 for i < n. 
Then 

(a) For all A C B and all R modules G 

Hi(P-1(A), p-1(A) n E; G) = 0 = Hi(p-1(A), p-1(A) n E; G) i < n 

(b) If {V} is any open covering of B, then in degree n the natural homo­
morphism is an isomorphism 

Hn(E,E; G) ;:::: Hn( {p-1 V},E; G) 

PROOF By the universal-coefficient formula, it suffices to prove (a) for G = R. 
If A C B is such that (p-1(A), p-1(A) n E) is homeomorphic to A X (F,F), 
then by the Kiinneth formula, 

Hi(P-1(A), p-1(A) n E; R) ;:::: Hi(A X (F,F); R) = 0 i < n 

From this it follows (as in the proof of theorem 9) by induction on the 
number of coordinate neighborhoods of the bundle needed to cover A (using 
the Mayer-Vietoris sequence and the five lemma) that (a) holds for all com­
pact A C B. By taking direct limits, (a) holds for any A. 

For (b), let {W} be the collection of finite unions of elements of {V}. 
By (a) and the universal-coefficient formula for cohomology, there is a com­
mutative diagram 

Hn(E,E; G) 

! 
::::: Hom (Hn(E,E;R), G) 

!:::: 
lim~{Hn(p-1(W), p-l(W) n E; G)} ::::: lim~{Hom (Hn(p-l(W), p-l(W) n E; R),G)} 

Hence we need only prove that a compatible collection {uv} V E {V} extends to a 
unique compatible collection {UW}WE {W}. This follows by using Mayer-Vietoris 
sequences again and from the fact that Hi(p-1(W), p-1(W) n E; G) = 0 for 
i < n .• 

For sphere bundles we have the following immediate consequence. 

17 COROLLARY A sphere bundle ~ with base B is orientable if and only if 
there is a covering {V} of B and a compatible family {uv}, where Uv is an 

orientation class of ~ I V for each V E {V}. • 

Since a trivial sphere bundle is orientable, corollaries 17 and 14 imply 
the following result. 

18 COROLLARY Any sphere bundle has a unique orientation class over Z2. • 

By theorem 2.8.12, there is a contravariant functor from the fundamental 
groupoid of the base space B of a sphere bundle ~ to the homotopy category 
which assigns to b E B the fiber pair (Eb,Eb) over b and to a path class [w] in 
B a homotopy class h[w] E [E.,(o),E.,(o); E.,(1),E.,(1)]' For fixed R there is then a 
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covariant functor from the fundamental groupoid of B to the category of 
R modules which assigns to b E B the module Hq+l(Eb,Eb; R) and to a path 
class [w] the homomorphism 

h[w] *: Hq+l(Ew(l»Ew(l); R) ~ Hq+l(Ew(o»Ew(o); R) 

19 THEOREM A sphere bundle ~ is orientable over R if and only if for 
every closed path w in B, h[ w] * = 1. 

PROOF If ~ is orientable with orientation class U E Hq+l(E,E; R), for any 
small path w in B (and hence for any path) 

h[w] * (U I (Ew(l»Ew(l»)) = U I (Ew(o),Ew(o») 

Since U I (Eb,Eb) is a generator of Hq+l(Eb,Eb; R), this implies that h[w] * = 1 
for any closed path w. 

Conversely, if h[ w] * = 1 for every closed path w in B, there exist generators 
Ub E Hq+l(Eb,Eb; R) such that for any path class [w] in B, h[ w] * (Uw(l») = Uw(O)' 
If V is any subset of B such that ~ I V is trivial, it is easy to see that there is an 
orientation class Uv of ~ I V such that Uv I (Eb,Eb) = Ub for all b E V. If {V} 
is an open covering of B by sets such that ~ I V is trivial for all V, then {Uv} 
is a compatible family of orientations, and by corollary 17, ~ is orientable. -

20 COROLLARY A sphere bundle with a simply connected base is orientable 
over any R. -

8 THE COHOMOLOGY ALGEBBA 

The cup product in cohomology makes the cohomology (over R) of a topologi­
cal pair a graded R algebra. In the first part of this section we define the 
relevant algebraic concepts and compute this algebra over Z2 for a real pro­
jective space and over any R for complex and quaternionic projective space. 
This is applied to prove the Borsuk-Ulam theorem. 

For the case of an H space, there is even more algebraic structure that 
can be introduced in the cohomology algebra. The cohomology of such a 
space is a Hopf algebra, and the second part of the section is devoted to its 
definition and some results about its structure. The section concludes with 
a proof of the Hopf theorem about the cohomology algebra of a compact con­
nected H space. 

A graded R algebra consists of a graded R module A = {Aq} and a 
homomorphism of degree 0 

p,:A®A~A 

called the product of the algebra (p, then maps Ap ® A q into Ap+q for all 
p and q). For a, a' E A we write aa' = p,(a ® a'). The product is associative 
if (aa')a" = a( a' a") for all a, a', a" E A and is commutative if 
aa' = (_l)deg a deg a' a' a for all a, a' EA. 
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I EXAMPLE If (X,A) is a topological pair, then H * (X,A; R) is a graded 
R algebra whose product is the cup product (with respect to the multiplica­
tion pairing of R with itself to R). It follows from property 5.6.10 that this 
product is associative and from property 5.6.11 that it is commutative. If 
A = 0, it follows from property 5.6.9 that 1 is a unit element of the algebra 
H* (X;R). H* (X,A; R) is called the cohomology algebra of (X,A) over R. 

2 EXAMPLE The polynomial algebra over R generated by x of degree 
n > 0, denoted by Sn(x), is defined by 

{o q F 0 (n) or q < 0 
[Sn(x)]q = free R module generated by Xp q = pn, p ::::: 0 

with the product (axp )(f3xq) = (af3)xp +q for a, f3 E R. It is then clear that 
Xo is a unit element and that Xp = (XI)P. If we denote Xl by x, then Xp = xp. 
Thus, disregarding the graded structure, Sn(x) is simply the polynomial alge­
bra over R in one indeterminate x. The truncated polynomial algebra over R 
generated by x of degree n and height h, denoted by Tn,h(X), is defined to be 
the quotient of Sn(x) by the graded ideal generated by xh. If h = 2, this 
is called the exterior algebra generated by x of degree n and is denoted 
by En(x). 

If A and B are graded R algebras, their tensor product A ® B is also a 
graded R algebra with product 

(a ® b)(a' ® b') = (_I)deg b deg a'aa' ® bb' 

If A and B have associative or commutative products, so does A ® B. 

3 EXAMPLE If R is a field and (X,A) and (Y,B) are topological pairs such 
that either H* (X,A; R) or H* (Y,B; R) is of finite type, it follows from theorem 
5.5.11 that 

H*(X,A; R) ® H*(Y,B; R);::::; H*((X,A) X (Y,B); R) 

We compute the graded Zz algebra H*(pn;Zz) for real projective space 
pn. Note that the double covering p; Sn -7 pn is a O-sphere bundle. We let 
Wn E HI(pn;ZZ) be the characteristic class (over Zz) of this bundle. 

4 THEOREM For n ::::: 1, H*(pn;Zz) is a truncated polynomial algebra over 
Zz generated by Wn of degree 1 and height n + 1. 

PROOF All coefficients in the proof will be Zz and will be omitted. By 
corollary 5.7.18 and theorem 5.7.11, there is an exact Thom-Gysin sequence 

... -7 Hq(Sn) ~ Hq(pn) ~ Hq+l(pn) ~ Hq+I(Sn) -7 ... 

starting on the left with 0 -7 HO(pn) E..";. HO(Sn) and terminating on the right 

with Hn(Sn) ~ Hn(pn) -7 0 [note that Hq(pn) = 0 for q > n, because pn is a 
polyhedron of dimension n]. Because Hq(Sn) = 0 for 0 < q < n, it follows 
that 
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is an epimorphism for 0:::; q < n - 1 and is a monomorphism for 
0< q :::; n - 1. Because pn and Sn are connected for n ~ 1, p* HO(pn) = HO(Sn), 
which implies that '1'*: HO(pn) ~ Hl(pn) is also a monomorphism. Therefore 
Hq(pn) -=1= 0 for 0 :::; q :::; n, and because p* Hn(Sn) = Hn(pn) and Hn(Sn) ;::::; Z2, 
it follows that p* is a monomorphism and that '1'*: Hn-l(pn) ~ Hn(pn) is also 
an epimorphism. 

We have shown that for 0 :::; q :::; n - 1 

'1'*: Hq(pn) ;::::; Hq+l(pn) 

Then Wn = '1'*(1) is the nonzero element of Hl(pn), and by equation 5.7.15, 
'I'*(wnq) = wnq+l. Therefore, for 1 :::; q :::; n, wnq is the nonzero element of 
Hq(pn). • 

By corollary 3.8.9, Pn(C) and Pn(Q) are simply connected. It follows 
from corollary 5.7.20 that the Hopf bundles S2n+1 ~ Pn(C) with fiber Sl and 
S4n+3 ~ Pn(Q) with fiber S3 are orientable over any R. Let Xn E H2(Pn(C);R) 
and Yn E H4(Pn(Q);R) be the characteristic classses of these Hopf bundles 
(based on some orientation class of each bundle). An argument analogous to 
that of theorem 4, using the Thom-Gysin sequences of the Hopf bundles, 

'establishes the following result. 

S THEOREM For n ~ 1, H* (Pn(C);R) is a truncated polynomial algebra 
over R generated by Xn of degree 2 and height n + 1, and H* (Pn(Q);R) is a 
truncated polynomial algebra over R generated by Yn of degree 4 and height 

n + 1. • 

6 COROLLARY Let n > m ~ 1 and let i: pm C pn be a linear imbedding. 
Then for q:::; m 

i *: Hq(pn;Z2) ;::::; Hq(pm,Z2) 

PROOF The hypothesis that i is a linear imbedding implies that the O-sphere 
bundle over pm induced by i from the double covering Sn ~ pn is the double 
covering Sm ~ pm. By the naturality of the characteristic class, i * Wn = W m . 

The result now follows from theorem 4 and the fact that i * (wnq) = (i * wn)q. • 

7 COROLLARY Let n > m ~ 1 and let f: pn ~ pm be a map. There exists 
a map f': pn ~ Sm such that p 0 f' = f, where p: Sm ~ pm is the double 
covering. 

PROOF By the lifting theorem 2.4.5, it suffices to prove f #( 7T(pn)) = O. 
If m = 1, this follows from the fact that 7T(pn) = Z2 and 7T(Pl) = Z. Assume 
that m > 1 and observe that because Hl(pn) has just the two elements 0 and 
W n, either f* (wm) = 0 or f* (wm) = W n· Because f* is an algebra homomor­
phism, the latter is impossible [since 0 -=1= wnm+1 and f* (wmm+1) = 0]. There­
fore f* (wm) = O. 

We know that 7T(pn) = Z2, and a generator for this group is the homo­
topy class of the linear inclusion map i: pI C pn. Because f* (wm ) = 0, it fol­
lows that i * f* (wm) = O. If i: pI C pm is the linear inclusion map, by 
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corollary 6, i * (wm) =1= O. Since (f 0 i) * (wm) =1= i * (wm), f 0 i is not homotopic 
to j. Since 'IT(pm) = Zz, f 0 i is null homotopic. Hence f#[i] = [f 0 i] = 0, and 
so f#('lT(pn)) = 0 in this case also. • 

8 COROLLARY For n > m 2:: 1 there is no continuous map g: Sn _ Sm 
such that g( -x) = -g(x) for all x E Sn. 

PROOF If there were such a map, it would define a map J: pn _ pm such 
that the following square (where p and p' are the double coverings) is 
commutative 

p'l lp 
pnLpm 

By corollary 7, f can be lifted to a map 1': pn _ Sm. Then 

P1'p' = fp' = pg 

Therefore 1'p' and g are liftings of the same map. For any x E Sn either 
g(x) = 1'P'(x) or g( -x) = 1'P'(x) = 1'P'( -x). In any event, 1'P' and g must 
agree at some point of Sn. By the unique-lifting property 2.2.2, 1'P' = g. This 
is a contradiction, because for any x E Sn, p' maps x and - x into the same 
point, while g maps them into separate points. • 

This last result is equivalent to the Borsuk-Ulam theorem, which is next. 

9 THEOREM Given a continuous map J: Sn _ Rn for n 2:: 1, there exists 
x E Sn such that f(x) = f( -x). 

PROOF Assume there is no such x and let g: Sn _ Sn-l be the map defined by 

f(x) - f( -x) 
g(x) = IIf(x) - f(-x)11 

Then g( - x) = - g(x), which would contradict corollary 8. • 

Dual to the concept of graded R algebra is that of graded R coalgebra, 
which is defined by dualizing the concept of product. A graded R coalgebra 
consists of a graded R module A = {Aq} and a homomorphism of degree 0 

d: A_A ®A 

called the coproduct of the coalgebra (so d maps A q into Gji+j=q Ai ® Aj for 
all q). The coproduct is said to be associative if 

(d ® l)d = (1 ® d)d: A _ A ® A ® A 

and is said to be commutative if Td = d, where T: A ® A _ A (8) A is the 
homomorphism T(a ® a') = ( _l)deg a deg a'a' ® a. A counit for the coalgebra 
is a homomorphism f: A _ R (where R is regarded as a graded R module 
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consisting of R in degree 0) such that each of the composites 

E®l~R ®A 
~ 'i.'-

A ~ A ®A A 
l®~A ®R? 

is the identity map. 
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A Hopf algebra over R is a graded R algebra B which is also a coalgebra 
whose coproduct 

d: B----') B ® B 

is a homomorphism of graded R algebras. A Hopf algebra B is said to be con­
nected if BO is the free R module generated by a unit element 1 for the 
algebra and the homomorphism e: B ----,) R defined by e(al) = a for a E R is 
a counit for the coalgebra. 

10 EXAMPLE If X is a connected H space whose homology over a field R is 
of finite type, then the multiplication map }L: X X X ----,) X defines a coproduct 

d = }L *: H* (X;R) ----,) H* (X;R) ® H* (X;R) 

H* (X;R) with this coproduct is a connected Hopf algebra of finite type whose 
product is associative and commutative (the fact that X has a homotopy unit 
Xo implies that the map H* (X;R) ----,) H* (xo;R) ::::; R is a counit). 

We shall study connected Hopf algebras having an associative and com­
mutative product and describe the algebra structure of those which are of 
finite type over a field of characteristic O. The following is the inductive step 
of the structure theorem toward which we are heading. 

II LEMMA Let B be a connected Hopf algebra with an associative and 
commutative product over a field R of characteristic O. Let B' be a connected 
sub Hopf algebra of B such that B is generated as an algebra by B' and some 
element x E B - B'. If x has odd degree n, then as a graded algebra 
B::::; B' ® En(x) and if x has even degree n, then as a graded algebra 
B ::::; B' ® Sn(x). 

PROOF Because B' is a sub Hopf algebra of B, the unit element of B belongs 
to B'. Since x E B - B', x has positive degree n. Let A be the ideal in B gen­
erated by the elements of positive degree in B', and if 1J: B ----,) B/A is the 
projection, let 

d' = (1 ® 1J)d: B ----,) B ® B ----,) B ® (B/A) 

Then d' is an algebra homomorphism, d'(f3) = f3 ® 1 for f3 E B', and d'(x) = 
x ® 1 + 1 ® 1J(x). Note that x ¢ A, because A consists of finite sums ~i~O fJixi, 
where f3i E B' is of positive degree, so f3ixi is of degree larger than n unless 
i = O. Therefore 1J(x) =1= 0 in B/A. 

Assume that x is of odd degree. Because B has a commutative product 
and R has characteristic different from 2, x2 = O. We show that there is no 
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relation of the form f30 + f31X = 0 with f3o, f31 E B' and f31 =1= O. If there were 
such a relation, then 

o = d'(f3o + f31X) = f30 ® 1 + (f31 ® l)[x ® 1 + 1 ® 1I(X)] 
= f31 ® 1I(X) 

Since 1I(X) =1= 0, this implies f31 = 0, which is a contradiction. Therefore the 
homomorphism B' ® En(x) ~ B sending f3 ® 1 to f3 and f3 ® x to f3x is an 
isomorphism of graded algebras. 

Assume that x is of even degree. We shall show that there is no relation 
of the form ~O~i~T f3ixi = 0 with f3i E B', r ::::: 1, and f3T =1= O. If there were 
such a relation, consider one of minimal degree in x. Then 

o = d'(~ f3iXi) = ~ (f3i ® l)[x ® 1 + 1 ® 1I(X)]i 

= (~ if3iXi - 1) ® 1I(X) + ... + f3T ® (1I(X))' 

The only term on the right in B ® (B/A)n is the term (~if3iXi-l) ® 1I(X). 
It must be 0, and because 1I(X) =1= 0, ~ if3ixi-1 = O. If r > 1, this is a relation 
of smaller degree in x (note that rf3r =1= 0 because R has characteristic 0), and 
this is a contradiction. If r = 1, we get f31 = 0, which is also a contradiction. 
Therefore there is no relation, and the homomorphism B' ® Sn(x) ~ B 
sending f3 ® xq to f3~ for f3 E B' and q ::::: 0 is an isomorphism of graded 
algebras. -

We use this result to establish the following Leray structure theorem for 
Hopf algebras over a field of characteristic 01 . 

12 THEOREM Let B be a connected Hopf algebra with an associative and 
commutative product and of finite type over a field R of characteristic O. As 
a graded R algebra either B ;::::; R or B is the tensor product of a countable 
number of exterior algebras with generators of odd degree and a countable 
number of polynomial algebras with generators of even degree. 

PROOF Because B is of finite type, there is a countable sequence 
1 = Xo, xl, X2, . . . of elements of B such that i < ; implies that deg Xi :S deg Xi 
and such that as an algebra B is generated by the set {Xi}j:o.O. For n ::::: 0 let 
Bn be the sub algebra of B generated by Xo, Xl, ... , xn. We can also assume 
that Xn+1 does not belong to Bn. Because of the condition that deg Xi is a non­
decreasing function of ;, each Bn is a connected sub Hopf algebra of B (that is, 
d maps Bn into Bn ® Bn). Since Bn+1 is generated as an algebra by Bn and 
Xn+1, lemma 11 applies. Since Bo ;::::; R, Bl ;::::; R ® E(X1) or B1 ;::::; R ® S(X1)' 
Therefore B = Bo ;::::; R or B1 is either an exterior algebra on an odd-degree 
generator or a polynomial algebra on an even-degree generator. By induction 
on n, using lemma 11, each Bn+1 is a tensor product of the desired form. 
Since B has finite type, B ;::::; lim~ Bn, and B has the desired form. -

1 A structure theorem valid over a perfect field of arbitrary characteristic can be found 
in A. Borel, Sur la cohomologie des espaces fibres principaux et des espaces homo genes 
de groupes de Lie compacts, Annals of Mathematics, voL 57, pp. 115--207, 1953. 
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For a connected H space whose homology is finitely generated over a 
field F no polynomial algebra factors can occur in the above structure theorem, 
and we obtain the following Hopf theorem on H spaces. 

13 COROLLARY Let X be a connected H space whose homology over a field 
R of characteristic 0 is finitely generated. Then the cohomology algebra of X 
over R is isomorphic to the cohomology algebra over R of a product of a 
finite number of odd-dimensional spheres. • 

In particular, we obtain the following result about spheres that can be 
H spaces. 

14 COROLLARY No even-dimensional sphere of positive dimension is an 
H space. • 

9 THE STEENROD SQUARING OPERATIONS 

In the last section the cup product in cohomology was used to prove the 
Borsuk-Ulam theorem, a geometric result. Any other algebraic structure which 
can be introduced into cohomology (or homology) and which is functorial can 
be similarly applied. A particular example of such an additional algebraic 
structure is a natural transformation from one cohomology functor to another. 
These natural transformations are called cohomology operations. In this sec­
tion we introduce the concept of cohomology operation and define the par­
ticular set of cohomology operations called the Steenrod squares. 

Let p and q be fixed integers and G and G' fixed R modules. A cohomology 
operation B of type (p,q; G,G') is a natural transformation from the functor 
HP( ;G) to the functor Hq( ;G') (both functors being contravariant singular 
cohomology functors defined on the category of topological pairs). Thus B 
assigns to a pair (X,A) a function (which is not assumed to be a homomorphism) 

B(X,A): HP(X,A; G) ~ Hq(X,A; G') 

such that if f: (X,A) ~ (Y,B) is a map, there is a commutative square 

Hp(Y,B; G) B(y.B» Hq(Y,B; G') 

f* ~ ~f* 

Hp(X,A; G) B(x,A» Hq(X,A; G') 

A homology operation is defined Similarly, but we shall not discuss homology 
operations. 

Following are some examples. 

1 If C[!: G ~ G' is a homomorphism, C[!* is a cohomology operation of type 
(q,q; G,G') for every q, where 

C[!*: Hq(X,A; G) ~ Hq(X,A; G') 



270 PRODUCTS CHAP. 5 

is defined as in Sec. 5.4. <p* is called the operation induced by the coefficient 
homomorphism <po 

2 Given a short exact sequence of R modules 0 - G' _ G - G" - 0, 
the Bockstein cohomology operation f3* of type (q, q + 1; G",G') for every q 
is defined to equal the Bockstein homomorphism 

f3*: Hq(X,A; G") _ Hq+1(X,A; G') 

corresponding to the coefficient sequence 0 _ G' _ G _ G" _ 0 as defined 
in theorem 5.4.11. 

3 For any p and q there is an operation 8p of type (q,pq; R,R), called the 
pth-power operation, defined by 

An operation 8 is said to be additive if 8(X,A) is a homomorphism for 
every (X,A). The operations in examples 1 and 2 are additive; however, the 
operation 8p of example 3 is not additive, in general. 

Any cohomology operation provides a necessary condition for a homo­
morphism between the cohomology modules of two pairs to be the induced 
homomorphism of some continuous map between the pairs. For example, if 8 
is of type (p,q; G,G), a necessary condition that a homomorphism 

1/;: H*(Y,B; G) _ H*(X,A; G) 

be induced by some map f: (X,A) _ (Y,B) is that 

1/;8(y,B) = 8(x,A)1/;: Hp(Y,B; G) _ Hq(X,A; G) 

In these terms the algebraic idea underlying corollaries 5.8.7 and 5.8.8 is that 
for n > m 2': 1 there is no homomorphism 

1/;: H* (pm;Z2) - H* (pn;Z2) 

such that 1/; sends the nonzero element of Hl(pm;Z2) to the nonzero element 
of H1(pn;Z2) and commutes with the (m + l)st-power operation 8m+1 of type 
(1, m + 1; Z2,Z2). 

We shall now define a sequence of operations Sqi called the Steenrod 
squares, each Sqi being a cohomology operation of type (q, q + i; Z2,Z2) for 
every q. These operations include the squaring operation 82 and are related 
to it by "reducing" the value of 82(u) in a certain way. For this reason, the 
operations Sqi are also called the reduced squares. 

For the remainder of this section we make the assumption that all 
modules are over Z2 and all homology and cohomology modules have coeffi­
cients Z2. The Steenrod squares, or reduced squares, {Sqi h;:.o are additive 
cohomology operations 
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defined for all q such that 

(a) SqO = 1. 
(b) If deg u = q, then Sqqu = u v u. 
(c) If q > deg u, then Sqqu = O. 
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(d) If u E H*(X,A) and v E H*(Y,B) and IX X B, A X Y} is an excisive 
couple in X X Y, the following Cartan formula is valid: 

Sqk(U X v) = . ~ Sqiu X Sqiv 
'+J=k 

The above properties characterize the cohomology operations Sqi. We 
shall not prove the uniqueness 1 , but shall content ourselves with their con­
struction. First we establish a formula equivalent to the Cartan formula. 

4 LEMMA If U, v E H* (X,A), then 

Sqk(u v v) = . ~ Sqiu v Sqiv 
'+J=k 

PROOF Since u v v = d* (u X v), where d: (X,A) -7 (X,A) X (X,A) is the 
diagonal map, this follows from the Cartan formula and functorial properties 
of Sqi. • 

For any chain complex C let T: C ® C -7 C ® C be the chain map 
interchanging the factors [T( Cl ® C2) = C2 ® Cl is a chain map over Z2J. 

5 LEMMA There exists a sequence {Ddi;>O of functorial homomorphisms 
Di: ~(X) -7 ~(X) ® ~(X) of degree i such that 

(a) Do is a chain map commuting with augmentation. 
(b) For i > 0, ODi + Dio + Di - 1 + TDj-l = O. 

If {Dj} and {Dj} are two such sequences, there exists a sequence {Ej }j;>o of 
functorial homomorphisms Ej: ~(X) -7 ~(X) ® ~(X) of degree i such that 

(c) Eo = O. 
(d) For i ~ 0, oEj+1 + Ej+1o + Ej + TEj + Dj + Dj = O. 

PROOF We use the method of acyclic models. Let R be the group ring of Z2 

over the field Z2. We regard R as the quotient ring of the polynomial ring Z2(t) 
modulo the ideal generated by the polynomial t2 + 1 = O. Thus the elements 
of R have the form a + bt, where a and b E Z2. 

Let Z2 be regarded as a trivial R module (that is, the element t of R in­
duces the identity map of Z2) and let C be the free resolution of Z2 over R in 
which Cq is free with one generator dq for all q 2': 0 and which has boundary 
operator o(dq) = (1 + t)dq_1 for q 2': 1 and augmentation e(do) = 1. The 
functor which assigns to a space X the chain complex ~(X) ® C is augmented 

zz 
and free over R with models {~q} q;>O and basis Uq ® dj}. We regard 

1 For a proof see N. Steenrod and D. Epstein, Cohomology operations, Annals of Mathenwtics 
Studies No. 50, Princeton University Press, Princeton, N.J., 1962. 
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il(X) ® il(X) as a chain complex over R, with t acting on il(X) ® il(X) in the 
Z2 

same way T does. Then il(X) ® il(X) is augmented and acyclic, with models 
{ilq}q",o, It follows from theorem 4.3.3 (which is valid for chain complexes 
over R) that there exist natural chain maps T: Ll(X) ® C ~ il(X) ® il(X) pre­
serving augmentation, and any two are naturally chain homotopic. 

A map T: il(X) ® C ~ il(X) ® il(X) of degree 0 corresponds bijectively 
to a sequence of maps 

D j : il(X) ~ il(X) ® il(X) ; ~ 0 

of degree; such that Die) = T(e ® dj ). Then T is a chain map preserving 
augmentation if and only if {Dd satisfies (a) and (b). Thus there exist families 
{Dj} satisfying (a) and (b), and any such family corresponds to some T. 

Similarly, a map H: il(X) ® C ~ il(X) ® il(X) of degree 1 corresponds 
bijectively to a sequence of maps 

Ej: Ll(X) ~ Ll(X) ® Ll(X) ; ~ 0 

of degree; such that Eo = 0 and Ej(e) = H(e ® dj - 1 ) for; ~ 1. Then H is a 
chain homotopy from T to T' if and only if {Ej} satisfies (e) and (d) for the 
sequences {Dj} and {Dj} corresponding to T and T', respectively. Thus, 
if {Dj} and {Dj} are two sequences satisfying (a) and (b), there is a sequence 
{Ej} satisfying (e) and (d) .• 

Given a sequence {Dj }hO as in lemma 5, we define homomorphisms 

Dj : Hom (.l(X) Q9 .l(X), Z2) --> Hom (.l(X), Z2) 

of degree -; by (Dj*f)(a) = f(Dja) for a E Llq(X) and f E Hom (Ll(X) ® 
il(X), Z2). If e* E Hom (ilq(X), Z2) is a q-cochain of il(X), then 

e* ® c* E Hom (il(X) ® Ll(X), Z2), 

and we define a (q + i )-cochain Sqic* E Hom (il(X), Z2) by 

i>q 
i ~ q 

S . * {O 
q'e = Dt-i(e* ®e*) 

Let us now establish some properties of these cochain maps. It will be 
convenient to understand Dj = 0 for; < O. Then lemma 5b holds for all ;. 

6 If e* is zero on Ll(A) for some A C X, then Sqie* is zero on Ll(A). 

PROOF This follows from the naturality of {Dj}, and hence of {Sqi}. • 

7 If 8c* = 0, then 8(Sqie*) = O. 

PROOF This is trivial if i > q. If i ~ q, we have 

8(Sqic*)(a) = Dt-i(e* ® e*)(aa) = (c* ® e*)(Dq_iaa) 
= (c* ® c* )(aDq_ia) + (e* ® c* )(Dq_i_1a + TDq_i_1a) 
= (c* ® e*)(aDq_ia) 
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the last equality because (c* ® c* )(Tc) = (c* ® c*)c for any c E .:l(X) ® .:l(X). 
Then we have 

(c* ® c* )(oDq_ia) = 8(c* ® c* ) (Dq_ia) = 0 

because 8c* = O. • 

8 If c* = 8c*, then SqiC* = 8[D"'_i(C* ® c*) + Dd-i-l(C* ® c* )]. 

PROOF If i > q, both sides are zero. If i ::; q, we have 

(Sqic*)(a) = D~_i(8c* ® 8c*)(a) = 8(c* ® 8c*)(Dq_i(a)) 
= (c* ® 8C* )(Dq_ioa + Dq_i_1a + TDq_i_1a) 
= D:_i(C* ® c*)(oa) + 8(c* ® c*)(Dq_i_1a) 

the last equality because 

(c* ® 8c*)(Dq_i_1a + TDq_i_1a) = (c* ® 8c* + 8c* ® c*)(Dq_i_1a) 

We also have 

8(c* ® c* )(Dq_i_1a) = (c* ® c* )(Dq_i_1oa + Dq- i_2a + TDq_i_2a) 
= D~_i_1(c* ® c* )(oa) 

The result follows by substituting this into the right-hand side of the other 
equation. • 

9 If ct and c~ are cocycles, then 

Sqi(c1 + c~) = Sqic1 + Sqic~ + 8Dd-i+l(c1 ®~) 

PROOF If i > q, both sides are zero. If i ::; q, we have 

Sqi(c1 + ~)(a) = [(c1 + 4) ® (c1 + ~)](Dq_ia) 
= (c'j' ® c1 + ~ ® c~ )(Dq_ia) + (c1 ® ~ )(Dq_ia + TDq_ia) 
= (Sqic1 + Sqi~)(a) + (c1 ® c~)(Dq-i+lOa + ODq-i+1a) 
= [Sqic1 + Sqic~ + 8D:-i+l(c1 ® c~)](a) 

the last equality because 8(c1 ® ~) = o. • 
It follows that there is a well-defined functorial homomorphism 

Sqi: Hq(X,A) ~ Hq+i(X,A) 

defined by Sqi{ c*} = {Sqic*}. If {Dj} is another system satisfying lemma 5a 
and 5b, and Sq'i is defined using this system, let {Ej} satisfy 5c and 5d. 
If c* is a q-cocycle of .:l(X)j .:l(A) , then 

(c* ® c* )(Dq_ia + D~_ia + Eq+1_ioa) = 0 

Therefore 

SqiC* + Sq'ic* + 8E:+1_i(C* ® c*) = 0 

showing that Sqi{ c*} = Sq'i{ c* }. Hence Sqi is uniquely defined independent 
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of the particular choice of {Dd. We shall now verify that these cohomology 
operations {Sqi} satisfy the axioms characterizing the Steenrod squares. 

10 THEOREM The additive cohomology operations {Sqi} defined above 
satisfy conditions (a) to (d), inclusive, on page 271. 

PROOF Let C(ll q) denote the oriented chain complex of the simplex. Over 
Z2 there is a unique orientation for each simplex, and C(ll ~ is isomorphic 
to the subcomplex of ~(~q) generated by the singular simplexes which are the 
faces of ~q. We regard C(~q) as imbedded in ~(M) in this way. E(~q) is 
acyclic, and if ,\: M -7 ~q is a p-face of M, then ~('\)(C(M)) C C(~q). It 
follows that a sequence {Dj} can be found satisfying lemma 5a and 5b such 
that Dj(I;q) E C(~q) ® C(~q) for all q and j. For such a sequence, Dj(I;q) = 0 if 
j > q (because [C(~q) ® C(M)]s = 0 if s > 2q), whence Dj(a) = 0 for any 
a E ~q(X) with q < j. 

We now shall prove Dq(I;q) = I;q ® I;q for all q by induction on q. If q = 0, 
then Do(I;o) must have nonzero augmentation, by lemma 5a. The only element 
of C(~o) ® C(~o) with nonzero augmentation is I;o ® I;o. Therefore Do(I;o) = 
I;o ® I;o. Assume that q > 0 and Dq-1(I;q-l) = I;q-l ® I;q-l. Either Dq(I;q) = 
I;q ® I;q or Dq(I;q) = O. In the latter case, by lemma 5b, we have [because 
Dq(oI;q) = 0] 

Dq-1(I;q) + TDq-1(I;q) = 0 

From this it follows that Dq-1(I;q) = L ai(I;q ® I;q(i) + I;/i) ® I;q), where ai = 0 
or ai = 1. This is a contradiction, because 

Dq- 2 (I;q) + TDq- 2(I;q) = oDq-1(I;q) + Dq-1(oI;q) 

and I;q(i) ® I;q(i) has a coefficient of 2ai + 1 = 1 on the right and a coefficient 
of 0 on the left. 

Therefore, with this choice of 1 Dj } we have Dq(a-) = a- (2) a- if a- has 
degree q. Then 

(SqOc*)(a) = (c* ® c*)(Dq(a)) = [c*(a)J2 

Because a2 = a for a E Z2, we see that SqOc* = c* , and so SqO = 1, showing 
that condition (q) is satisfied. 

By definition, Do is a chain approximation to the diagonal. Therefore 
{ m (c* ® c*)} = {c*} v {c* } for any co cycle c* , and so Sqqu = u v u if 
deg u = q. Hence condition (b) is satisfied. From the definition of Sqi condi­
tion (c) is trivially satisfied. 

It merely remains to verify the Cartan formula. Let {Dj} be a system 
satisfying lemma 5a and 5b and let {D/} be the collection of homomorphisms 
for ~(X). On the category of pairs of topological spaces X and Y the system 
{DkXXY} and the system {T Li+j=k TkDix ® DjY}, where 

T: [~(X) ® ~(X)] ® [~(Y) ® ~(Y)] -7 [~(X) ® ~(Y)] ® [~(X) ® ~(Y)] 

interchanges the second and third factors, both satisfy lemma 5a and 5b. 
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Then a system {EkXXY} satisfying 5c and 5d with respect to them can be 
defined by the method of acyclic models. Therefore the system 

{T ~ TkDix ® D/} 
i+i=k 

can be used to define 5qk(U X v) for u E H*(X,A) and v E H*(Y,B). Let ct 
be a p-cochain of X, c~ a q-cochain of Y, (Jl a singular p'-simplex of X with 
P ~ p' ~ 2p, and (J2 a singular q' -simplex of Y with q ~ q' ~ 2q, where 
p' + q' = P + q + k. Then 

5qk(ct ® q )(Jl ® (J2) 

= [(q ® c~) ® (q ® c~)](q~~_k(Jl ® (J2)) 

= [(ct ® cf) ® (c~ ® c~)K . ~ TP+q-kDix(Jl ® D/(J2) 
'+J=p+q-k 

= [(C{ (8) ci)(D2';,-P'O"l)] [(c: (8) c:)(D!rn'0"2)j 

= (5qP'-Pq ® 5qq'-qC~)(Jl (>9 (J2) 

Letting (Jl and (J2 vary, we see that 5qk(ct ® c~) = ~i+i=k 5qict ® 5qiq. 
Passing to cohomology and using the natural homomorphism 

H*(X,A) ® H*(Y,B) ~ H*([fl(X)/fl(A)] ® [fl(Y)/fl(B)]) ;::;H*((X,A) X (Y,B)) 

sending the tensor product to the cross product, we obtain 

Sqk(U X v) = L Sqiu x Sqjv 
i+j=k 

showing that condition (d) is satisfied. • 

II EXAMPLE Observe that, by condition (b) on page 271 and theorem 5.8.5, 

5q2: H2(P2(C)) ~ H4(P2(C)) 

is nontrivial. If u E H2(P2(C)) is such that 5q2u -=1= 0 and v E Hl(I,i) is the 
nontrivial element, it follows from condition (d) that 

5q2(U X v) = 5q2u X v 

and 5q2: H3(P2(C) X (I,i)) ~ H5(P2(C) X (I,i)) is nontrivial. Let X be the 
unreduced suspension of P2(C) obtained from P2(C) X 1 by identifying 
P2(C) X 0 to one point Xo and P2(C) X 1 to another point Xl. There is then a 
continuous map 

f: P2(C) X (I,i) ~ (X, Xo U Xl) 

inducing an isomorphism 

f*: Hq(X, Xo U Xl) ;::; Hq(P2(C) X (1,1)) 

for all q. Therefore 5q2: H3(X) ~ H5(X) is nontrivial. Let Y be the one-point 
union of 53 and 55. An easy computation shows that X and Y have isomorphic 
homology and cohomology for any coefficient group, and even isomorphic 
cup and cap products. However, because 5q2: H3(X) ~ H5(X) is nontrivial 
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and Sq2: H3(Y) ~ H5(Y) is trivial, X and Yare not of the same homotopy type. 

Further applications of the Steenrod squares will be given in the next 
chapter and in Chap. 8. 

It is obvious that cohomology operations of the same type can be added 
and that the sum is again a cohomology operation of the same type. Given 
cohomology operations 8 of type (p,q; G,G') and 8' of type (q,r; G',G"), their 
composite 8'8 (of natural transformations) is a cohomology operation of type 
(p,r; G,G"). In this way the Steenrod squares can be added and multiplied, 
and they generate an algebra of cohomology operations called the modulo 2 
Steenrod algebra. 

In this algebra the following Adem relations1 hold: 

0< i < 2; 

where [i/2] denotes as usual the largest integer:;; i/2 and the binomial coeffi­
cient (t~;?) is reduced modulo 2. Using these relations, it is easily shown that 
the algebra of cohomology operations generated by Sqi, where i is a power of 2, 
contains all the Steenrod squares. This implies that the only spheres that can 
be H spaces have dimension 2n - 1 for some n. By using deeper properties 
of the algebra of cohomology operations Adams2 has shown that the only 
spheres that can be H spaces are the spheres So, Sl, S3, and S7. Each of these 
is, in fact, an H space, with multiplication defined to be the multiplication of 
the reals, complex numbers, quatemions, or Cayley numbers, respectively, 
of norm l. 

EXERCISES 

A DISSECTIONS 

Let C be a graded module over R. A filtration (increasing) of C is a sequence {FsC} of 
graded submodules of C such that FsC C FS+l C for all s. It is said to be bounded below 
if for any t there is s(t) such that Fs(t)Ct = 0, and it is convergent above if U FsC = C. 

I If {FsC} is a filtration of a chain complex C by subcomplexes, there is an increasing 
filtration of H* (C) defined by FsH* (C) = im [H* (FsC) -? H* (C)J. If the original filtration 
on C is bounded below or convergent above, prove that the same is true of the induced 

filtration on H* (C). 

An increasing filtration {FsC) of a chain complex C by subcomplexes is called a dissec­
tion if it is bounded below, convergent above, and if 

1 See J. Adem, The iteration of the Steenrod squares in algebraiC topology, Proceedings of the 
National Academy of Sciences, USA, vol. 38, pp. 720-726, 1952, or H. Cartan, Sur !'iteration 
des operations de Steenrod, Commentarii Mathematici Helvetici, vol. 29, pp. 40-58, 1955. 
2 See J. F. Adams, On the non-existence of elements of Hopf invariant one, Annals of Mathe­
matics, vol. 72, pp. 20-104, 1960. 
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Given a dissection {F.C} of a chain complex C, the sequence 

... ~ Hq+l(FQ+1C,FQC) ~ HQ(FQC,FQ_1C) ~ HQ-l(FQ-lC,FQ-2C) ~ ... 

is a chain complex C, called the chain complex associated to the dissection. 
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2 If C is the chain complex associated to a dissection of C, prove that H. (C) :::::: H. (C). 

3 Let {F.G} be a dissection of a free chain complex C by free subcomplexes such that 
Fs+IC/F.C is free for all s. If C is the chain complex associated to the dissection, prove 
that C and C have isomorphic homology and cohomology for all coefficient modules. 
[Hint: The freeness hypotheses ensure that the universal-coefficient theorems hold for 
both homology and cohomology. Then {F.C ® G} is a dissection of C ® G whose asso­
ciated chain complex is isomorphic to C ® G. Dual considerations apply to {Hom (F.C,G)} 
and Hom (C,G).] 

A block dissection of a chain complex C is a collection of subcomplexes {EjQ}, called 
blocks, where q varies over the set of integers and for each q, i varies over a set JQ, such 
that if F.C is the subcomplex of C generated by {EjQ}q". and if E;Q = EjQ n F._1 C, then 

EjQ n EkQ C FQ- 1 C 

EjQ = 0 

U F.C = C 

H;(E;Q,E;Q):::::: (~ 

i*k 
q sufficiently small 

i*q 
i=q 

4 If {EjQ} is a block dissection of a chain complex C, prove that the corresponding 
collection {F.C} is a dissection of C whose associated chain complex C is free with 
generators for CQ in one-to-one correspondence with tlte set JQ. 

A block dissection of a simplicial complex K is a collection of subcomplexes {K;Q}, 
where q varies over tlte set of integers and for each q, i varies over some indexing set JQ, 

such that if F.K = U j ,;. KjQ and K;Q = F._1K n K;Q, then 

KF n KkQ C FQ_1K 

K;Q = 0 

U F.K = K 

. (0 H;(KjQ,KjQ):::::: Z 

i*k 
q sufficiently small 

i*q 
i = q 

5 If {KjQ} is Ii block dissection of K, prove that {C(KjQ)} is a block dissection of the 
chain complex C(K) by free subcomplexes. If C is the chain complex associated to the 
dissection, prove that C and C(K) have isomorphic homology and cohomology with any 
coefficient group. 

B HOMOLOGY MANIFOLDS 

A homology n-manifold is a locally compact Hausdorff space X such that for all x E X, 
HQ(X, X - x) = 0 for q * n and either Hn(X, X - x) = 0 or Hn(X, X - x) :::::: Z. Further­
more, if the boundary X of X is defined to be the subset 

X = {x E X I Hn(X, X - x) = O} 

then we also assume that X - X is a nonempty connected set. If X = 0, X is said to be 
without boundary. 
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I If X is a homology n-manifold and Y is a homology m-manifold, prove that X X Y is 
a homology (n + m)-manifold whose boundary equals X X Y u X X Y. 
2 Prove that if a polyhedron is a homology n-manifold, its boundary is a subpolyhedron. 

3 If K is a simplicial complex triangulating a homology n-manifold X, prove that K is 
an n-dimensional pseudomanifold and K triangulates 1<.. (A polyhedral homology n-mani­
fold is said to be orientable or nonorientable, according to whether any triangulation of 
it is orientable or nonorientable as a pseudomanifold.) 

4 Let (K,K) be a simplicial pair triangulating a polyhedral homology n-manifold (X,X) 
and let L be the subcomplex of the barycentric subdivision K' consisting of all simplexes 
disjoint from K'. If sq is a q-simplex of K - K, let En-q(sq) be the subcomplex of L gen­
erated by the star of the barycenter b(sq). Prove that {En-q(sq)} s'I € K-X is a block dissec­
tion of L and that if C is the chain complex associated to this block dissection, then C 
has homology and cohomology isomorphic to that of X-X. (Hint: let st sq = sq * B(sq), 
where B(sq) is a subcomplex of K. Then En-q(sq) = b(sq) * [B(sq)l' and En-q(sq) = [B(sq)]'. 
Also note that ILl is a strong deformation retract of IKI - IKI.) 
:; Lefschetz duality theorem. Let (K,K) be a simplicial pair triangulating a compact 
homology n-manifold (X,X) and assume that z E Hn(K,K) is an orientation of K. For each 
q-simplex sq of K - K let z(sq) E Hn(K, K - st sq) be the image of z, and assume an 
orientation aq of sq chosen once and for all. Then z(sq) = aq * z(aq), where z(aq) E 
Hn_q_1(B(sq)). Define z'(aq) E Hn_q(En-q(sq),En-q(sq)) to correspond to z(aq) under the 
isomorphisms 

Hn_q_1(B(sq)) ::::: Hn_q_1(En-q(sq)) ::::: Hn_q(En-q(sq),En-q(sq)) 

Let <p: Hom (Cq(K,K), G) ~ Cn- q ® G be the homomorphism defined by 

<p(u) =}; z'(aq) ® u(aq) u E Hom (Cq(K,K), G) 
crq 

Prove that <p is an isomorphism and that it commutes up to sign with the respective co­
boundary and boundary operators. Deduce isomorphisms 

Hq(X,X; G) ::::: Hn_q(X - X; G) and Hq(X,X; G) ::::: Hn-q(X - X; G) 

C PROPERTIES OF THE TORSION PRODUCT AND EXT 

In this group of exercises all modules will be over a principal ideal domain R. 

I Prove that the torsion product is associative. 

2 If A, B, and C are modules, prove that 

A ® (B * C) EB A * (B ® C) 

is symmetric in A, B, and C. 

3 Given a module A and a short exact sequence of modules 

o ~ B' ~ B ~ B" ~ 0 

prove there is an exact sequence 

o ~ Hom (A,B') ~ Hom (A,B) ~ Hom (A,B") ~ 
Ext (A,B') ~ Ext (A,B) ~ Ext (A,B") ~ 0 

4 Given a short exact sequence of modules 

O~A'~A~A"~O 

and given a module B, prove there is an exact sequence 
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o ---? Hom (A",B) ---? Hom (A,B) ---? Hom (A',B)---? 
Ext (A ",B) ---? Ext (A,B) ---? Ext (A',B) ---? 0 

If C = {Cd and C * = {Ci} are graded modules, there is a graded module 
Hom (C,C*) = {Homq (C,C*)}, where Homq (C,C*) = X i+i=q Hom (C;,Ci) [thus an 
element of Homq (C,C *) is an indexed family {C:Pi: Ci ---? Cq-i };J. Similarly, there is 
a graded module Ext (C,C*) = {Extq (C,C*)}, where Extq (C,C*) = Xi+i=q Ext (Ci,O). 

5 If C is a chain complex and C * is a cochain complex, prove that Hom (C, C *) is a 
cochain complex, with 

(8c:p)i,j = C:Pi-l,j 0 Ji + (_1)i8j- 1 0 C:Pi,j-l 

and that Ext (C,C*) is a cochain complex with 

c:P = {C:Pi,j} E Homq (C,C*) 

(8l/;)i,j = Ext (o;,l)(l/;i-u) + (_l)i Ext (1,8i- 1)(l/;i,j-l) 

6 If C is a chain complex and C* is a cochain complex such that Ext (C,C*) is 
acyclic, prove that there is a split short exact sequence 

o ---? Extq-l (H* (C),H* (C*)) ---? Hq(Hom (C,C*)) ---? Homq (H* (C),H* (C*)) ---? 0 

7 If C and C' are chain complexes and C * is a cochain complex, prove that the expo­
nential correspondence is an isomorphism 

Hom (C, Hom (C',C*)):::::: Hom (C ® C', C*) 

8 Let (X,A) and (Y,B) be topological pairs such that {X X B, A X Y} is an excisive 
couple in X X Y. For any module G prove that there is a split short exact sequence 

o ---? Extq- 1 (H* ,H*) ---? Hq((X,A) X (Y,B); G) ---? Homq (H* ,H*) ---? 0 

where H* = H* (X,A; R) and H* = H* (Y,B; G). 

D CATEGORY 

A topological space X is said to have category::;; n, denoted as cat X ::;; n, if X is the 
union of n closed sets, each deformable to a point in X. 

I If X is a connected polyhedron of dimension n, prove that cat X s: n + 1. 

2 If X is any space, prove that cat (SX) ::;; 2. 

:I If cat X ::;; n, prove that all n-fold cup products of positive-dimensional cohomology 
classes of X vanish. 

4 Prove that cat pn = n + 1 and cat (pnl X ... X pnk) = nl + ... + nk + 1. 

E HOMOLOGY OF FIBER BUNDLES 

I Let p: E ---? B be a fiber-bundle pair, with total pair (E,E) and fiber pair (F,F), such 
that H* (F,F) = O. Prove that H* (E,E) = o. 
2 If p: E ---? B is a fiber-bundle pair over a path-connected base space B, prove that a 
homomorphism B: H* (F,F; R) ---? H * (E,E; R) is a cohomology extension of the fiber if 
and only if for some b E B the composite 

is an isomorphism. 

3 Let p: E ---? B be a fiber-bundle pair over a path-connected base space. If for some 
b E B the pair (Eb,Eb) is a weak retract of (E,E), prove there exists a cohomology exten­
sion of the fiber. 
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4 Prove that a q-sphere bundle ~ with base space B is orientable over R if and only if 
for every map a: Sl ~ B the bundle a* (~) is orientable over R. 

5 Prove that a q-sphere bundle ~ is orientable over Z if and only if there is an element 
U E Hq+1(E~"E(; Z4) whose image in Hq+1(EE,EE; Z2) is the unique orientation class of ~ 
over Z2. (Hint: Show that there is such an element U if and only if for every closed path 
w in the base space, h[ w J * is the identity map of Hq+l(Ew(l),Ew(l); Z4), and this, in turn, is 
equivalent to the condition that h[wJ * is the identity map of Hq+l(Ew(l),Ew(l); Z).) 

6 Let ~ be a q-sphere bundle with base space B and with orientation class 
U, E Hq+l(E"E~; R) and let Q~ E Hq+1(B;R) be the corresponding characteristic class. 
Prove that <I> r (Q,) = U~ v U(. 

7 Prove that the characteristic class Q~ of an even-dimensional sphere bundle ~ oriented 
over Z has order 2. 

8 Let ~ be a sphere bundle oriented over R, with base space B. If ~ has a section in E~, 
(that is, if the map Pt: E;; -+ B has a right inverse), prove that its characteristic class 
Q, = O. [Hint: Any two sections B ~ E~ are homotopic in E~. Since E~ is the mapping 
cylinder of p~: E~ ~ B, there is an inclusion map k: B C EE which is a section. There is 
a section in EE if and only if k is homotopic to a map B ~ E" in which case the composite 

Hq+l(E(,E~; R) ~ Hq+l(E(;R) pH) Hq+l(B;R) 

is trivial, because p* -1 = k*.J 

F HOPF ALGEBRAS 

I Prove that the tensor product of connected Hopf algebras is a connected Hopf algebra. 

2 If B is a connected Hopf algebra of finite type over a field R, prove that 
B* = Hom (B;R) is a connected Hopf algebra over R whose product and coproduct are 
dual, respectively, to the coproduct and product of B. 

3 Let B be a connected Hopf algebra over a field of characteristic p * 0 and assume 
that B has an associative and commutative product and is generated as an algebra by a 
single element x of positive degree. Prove that if deg x is odd and p * 2, then B = E(x), 
and if deg x is even or p = 2, then either B = Sdeg xix) or B = I deg x,h(X), where h = pk 
for some k ~ 1. 

4 Let B be a connected Hopf algebra of finite type over a field of finite characteristic 
p * 0 and assume that B has an associative and commutative product. If the pth power 
of every element of positive degree of B is 0, prove that B is the tensor product of exte­
rior algebras (with generators of odd degree if p * 2) and truncated polynomial algebras 
of height p (with generators of even degree if p * 2). 

G THE BOCKSTEIN HOMOMORPHISM 

I Show that the Bockstein homomorphism in homology (or cohomology) anticommutes 
with the boundary homomorphism (or coboundary homomorphism) of a pair. 

For any prime p let f3p be the Bockstein homomorphism in either homology or 
cohomology for the short exact sequence of abelian groups 

o ~ Zp ~ Zp2 ~ Zp ~ 0 

Let j3p be the Bockstein homomorphism for the short exact sequence 

O~ Z~ Z~ Zp ~ 0 
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where Ap(n) == pn and /Lp is reduction modulo p. 

2 Prove that f3p == (/Lp)* 0 /lp' 

a Prove that f3p 0 f3p == O. 

4 Prove that f3p(u \J v) == f3p(u) \J V + (_I)deg U U \J f3p(v). 
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5 Prove that Sq2i+l == 132 0 Sq2i for i ?: O. [Hint: Show that there exist functorial 
homomorphisms {Ddj2 0 , with Dj of degree i from the integral singular chain complex Ll(X) 
to Ll(X) ® Ll(X), such that Do is a chain map commuting with augmentation and 

oD2j _ 1 + D2j _ 1 0 == D2j - TD2j 
aD2j - D2ja == DZj_ 1 + TD2J_1 

where T(U1 ® (2) == ( _I)deg 0) deg 02 U2 ® U1.] 

6 Let ~ be a q-sphere bundle and let U, E Hq+1(E"E,; Z2) be its unique orientation 
over Z2. Prove that ~ is orientable over Z if and only if f32(U,) == o. 

H STIEFEL-WHITNEY CHARACTERISTIC CLASSES 

Let ~ be a q-sphere bundle, with base space B, and let U, E Hq+1(E"E(; Zz) be its orien­
tation class over Z2. The ith Stiefel-Whitney characteristic class Wi(~) E Hi(B;Z2) for 
i ?: 0 is defined by 

<I>r(Wi(~)) == Sqi(U() 

I Let f: B' ---7 B be continuous. Prove that f* (Wi(~)) == Wi(f* ~). 

2 If ~ is a product bundle, prove that wM) == 0 for i > o. 
a Prove the following: 

(a) wo(~) is the unit class of HO(B;Zz). 
(b) f32(W2i(~)) == W2i+1W + W1W V W2i(~) for i ?: o. 
(c) If ~ is a q-sphere bundle, then Wi(~) == 0 for i > q + 1, and Wq+l(~) is the 
characteristic class of ~ over Z2. 
(d) ~ is orient able over Z if and only if W1W = O. 

If ~ is a q-sphere bundle over Band f is a q' -sphere bundle over B', their cross product 
~ X f is a (q + q' + I)-sphere bundle with E(x(' = E, X E(', E(X(' == E( X E" U E( X E(' 
and p,x(' == p, X p(,. 

4 If U, E Hq+1(E(,E,; Z2) and U(' E Hq'+l(E("E,'; Zz) are respective orientation classes, 
prove that 

U, XU" E Hq+q'+2(E(x",E(x('; Z2) 

is the orientation class of ~ X f. 

5 Prove that Wk(~ X f) == ~i+j=k Wi(~) X Wj(f). 

If ~ and f are sphere bundles with the same base space B, their Whitney sum 
~ EB f is the sphere bundle over B induced from g X f by the diagonal map B ---7 B X B. 

6 Whitney duality theorem. Prove that 

Wk(~ EB f) == . ~ Wi(g) v Wj(e) 
HJ=k 

I HOMOLOGY WITH LOCAL COEFFICIENTS 

If u: Llq ---7 X is a singular q-simplex of X, with q ?: 1, let Wo be the path in X obtained 
by composing the linear path in Llq from va to Vl with cr. Given a local system r of 
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R modules on X, define D.q(X;f) to be the R module of finitely nonzero formal sums ~ Ciaa 
in which a varies over the set of singular q-simplexes of X and Cia E [(a(vo)) is zero 
except for a finite set of a. For q > 0 define a homomorphism 0: D.q(X;f) ~ D.q-l(X;f) by 

o(Cia) = ~ (-I)iCia(i) + f(Wa)(Ci)a(O) 
O<~s.q 

I Prove that D.(X;f) = {D.q(X;f), o} is a chain complex which is free (or torsion free) 
if f is a local system of free (or torsion free) R modules, and if A C X, show that 
D.(A; f I A) is a subcomplex of D.(X;f). 

The horrwlogy of (X,A) with local coefficients f, denoted by H* (X,A; f), is defined 
to be the graded homology module of D.(X,A; f) = D.(X;f)/ D.(A; f I A). 

2 For a fixed ring R let 2 be the category whose objects are topological pairs (X,A), 
together with local systems f of R modules on X, and whose morphisms from (X,A) and 
f to (Y,B) and f' are continuous maps f: (X,A) ~ (Y,B), together with indexed families 
of homomorphisms {fx: f(x) ~ f'(f(X))}XEX such that fw(o) a [(w) = f'(f 0 W) 0 fw(1) for 
any path W in X. Prove that H* (X,A; f) is a covariant functor from (; to the category of 
graded R modules. 

3 Exactness. Given A C B C X and a local system f of R modules on X, prove that 
there is an exact sequence 

... ~ Hq(B,A; f I B) ~ Hq(X,A; f) ~ Hq(X,B; f) ~ Hq_l(B,A; f I B) ~ ... 

4 Excision. Let Xl and X2 be subsets of a space X such that Xl U X2 =: int Xl U int X2 . 

For any local system f of R modules on X prove that the excision map il from 
(Xl, Xl n X2) and f I Xl to (Xl U X2 , X2 ) and f I (Xl U X2 ) induces an isomorphism 

il *: H* (Xl, Xl n X2 ; f I Xl) :::; H* (Xl U X2 , X2 ; f I (Xl U X2 )) 

:. Two morphisms f and g in (; from (X,A) and f to (Y,B) and f' are said to be 
homotopic in (; if there is a homotopy F: (X,A) X I ~ (Y,B) from f to g and an indexed 
family of homomorphisms {F(x,tj: [(x) ~ f'(F(x,t)) }(X,t)EXXI such that F(x,o) = fx and 
F(x,l) = gx. Prove that homotopy is an equivalence relation in the set of morphisms from 
(X,A) and f to (Y,B) and f' and that the composites of homotopic morphisms are 
homotopic (so that the homotopy category of (; can be defined). 

6 Homotopy. If f and g are morphisms from (X,A) and f to (Y,B) and f' and f is 
homotopic to g in 2, prove that f* = g *: H* (X,A; f) ~ H* (Y,B; f'). 

7 If f and f' are local systems of R modules on X, there is a local system f ® f' on 
X with (f ® f')(x) = [(x) ® ['(x) and (f ® f')(w) = [(w) ® f'(w). In case f' is the 
constant local system equal to G, then prove that 

D.(X,A; f ® G) :::; D.(X,A; f) ® G 

Deduce a universal-coefficient formula for homology with local coefficients. 

8 If f and f' are local systems of R modules on X and Y, respectively, let r X r' = 
p* (r) ® p' * (r') be the local system on X X Y, where p* (r) and p' * (r') are induced 
from rand r', respectively, by the projections p: X X Y ~ X and p': X X Y ~ Y. 
Prove that there is a natural chain equivalence of D.(X;r) ® D.(Y;r') with D.(X X Y; r X r'). 
Deduce a Klinneth formula for homology with local coefficients. 

J COHOMOLOGY WITH LOCAL COEFFICIENTS 

If r is a local system of R modules on X, define D.q(X;r) to be the module of functions cp 
assigning to every singular q-simplex a of X an element cp(a) E [(a(vo)). Define a homo­
morphism 0: M(X;r) ~ D.q+1(X;r) by 
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I Prove that .1* (x;r) = {.1q(x;r), 8} is a cochain complex and that if A C X, the 
restriction map .1* (X;f) ~ .1* (A; r I A) is an epimorphism. 

The cohomology of (X,A) with local coefficients r, denoted by H* (X,A; r), is 
defined to be the graded cohomology module of 

.1* (X,A; r) = ker [.1* (X;r) ~ .1* (A; r I A)l 

2 For a fixed ring R let e be the category whose objects are topological pairs (X,A), 
together with local systems r of R modules on X, and whose morphisms from (X,A) and 
r to (Y,B) and 1" are continuous maps f: (X,A) ~ (Y,B), together with indexed families 
of homomorphisms {fx: r'(f(x)) ~ r(x) h,x such that f(w) 0 f w(1) = fw(O) 0 r'(f 0 w) for 
any path w in X. Prove that H * (X,A; f) is a contravariant functor from c:" to the 
category of graded R modules. 

3 Prove that the cohomology with local coefficients has exactness, excision, and homot­
opy properties analogous to those of the homology with local coefficients. 

4 If r is a local system of R modules on X and e is an R module, there is a local sys­
tem Hom (r,e) of R modules on X which assigns to x E X the module Hom (r(x),e). 
Prove that 

.1* (X,A; Hom (r,e)) ~ Hom (.1(X,A; r), e) 

Deduce a universal-coefficient formula for cohomology with local coefficients. 

Let ~ be a q-sphere bundle with base space B and let r, be the local system on B 
such that r«(b) = Hq+ 1(Eb,Eb). Let pt (r() be the local system on E, induced from r( by 
p( E( ~ B. A Thom class of ~ is an element U( E Hq+l(E(,E(; pt (ri )) such that for every 
b E B the element 

U( I (Eb,Eb) E Hq+l(Eb,Eb; pt (r() I Eb) = Hq+l(Eb,Eb; Hq+1(Eb,Eb)) 

corresponds to the identity map of Hq+ 1(E b,Eb) under the universal-coefficient isomorphism 

Hq+1(Eb,Eb; Hq+1(Eb,Eb)) ~ Hom (Hq+l(Eb,Eb), Hq+1(Eb,Eb)) 

5 Prove that every q-sphere bundle has a unique Thorn class. (Hint: Prove the result 
first for a product bundle, and then use Mayer-Vietoris sequences to extend the result to 
arbitrary bundles.) 

6 Let ~ be a q-sphere bundle with a base space B and let U( be its Thorn class. If r is 
any local system of abelian groups on X, prove that the homomorphism 

<1\: Hn(E(,E,; p*(r)) ~ Hn_q_1(B; r, 0 r) 

such that <I>,(z) = p* (U( r-, z), where U, r-, z is an element of Hn- q_1(E; p* (r, 0 r)), is 
an isomorphism. If B is compact, prove that the homomorphism 

<I> t: HT(B;r) ~ HT+q+l(E"E,; p* (r 0 r,)) 

such that <I> t (v) = p* (v) v U( is an isomorphism. 



CHAPTER SIX 

GENERAL COHOMOLOGY 

THEORY AND DUALITY 



IN THIS CHAPTER WE CONTINUE THE STUDY OF HOMOLOGY AND COHOMOLOGY 

functors, with particular emphasis on the homological properties of topological 
manifolds. For this important class of spaces we shall establish the duality 
theorem equating the cohomology of a compact pair in an orientable manifold 
with the homology, in complementary dimensions, of the complementary pair. 

The cohomology which enters in the duality theorem is the direct limit 
of the singular cohomology of neighborhoods of the pair, with the family of 
neighborhoods directed downward by inclusion. For the case of a closed pair 
in a manifold, the resulting direct limit depends only on the pair itself. In fact, 
it is isomorphic to the Alexander cohomology of the pair, Alexander cohomol­
ogy being another cohomology theory distinct from the singular cohomology. 

Thus we are led to consider Alexander cohomology. We define it and 
prove that it is a cohomology theory in the sense that it satisfies the axioms 
of cohomology theory. We also establish the special properties of tautness and 
continuity possessed by this theory and not generally valid for singular coho­
mology. For deeper properties of the Alexander theory we introduce the 
cohomology of a space with coefficients in a presheaf. The definition of this 
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cohomology involves a Cech construction, using nerves of open coverings. 
We use general properties of this cohomology to prove that for paracompact 
spaces the Alexander and Cech cohomologies are isomorphic, and with this 
result establish universal-coefficient formulas for the Alexander cohomology 
of compact pairs and for the Alexander cohomology with compact supports 
of locally compact pairs. 

The cohomology of presheaves is also applied to compare the singular 
and Alexander cohomology theories, and we prove that they are isomorphic 
for manifolds. Another application of the cohomology of presheaves is in the 
proof of the Vietoris-Begle mapping theorem. The final topic is a discussion of 
homological properties of one manifold imbedded in another. 

In Sec. 6.1 we define the slant product as a pairing from the cohomology 
of a product space and the homology of one of its factors to the cohomology 
of the other factor. This furnishes the map that is the isomorphism in the 
duality theorem for manifolds, and the duality theorem itself is proved in 
Sec. 6.2. In Sec. 6.3 we consider various formulations of orientability for 
manifolds. 

The Alexander cohomology theory is defined in Secs. 6.4 and 6.5, and 
the axioms of cohomology theory are verified for it. Section 6.6 contains 
a proof of the tautness property for Alexander cohomology, that the Alexander 
cohomology of a closed pair in a paracompact space is isomorphic to the direct 
limit of the Alexander cohomology of its neighborhoods. We deduce the con­
tinuity property of Alexander cohomology and show that the continuity 
property characterizes Alexander cohomology on compact pairs. We also 
define the Alexander cohomology with compact supports. 

Sections 6.7, 6.8, and 6.9 develop the theory of the cohomology of spaces 
with coefficients in a presheaf and illustrate its application to the Alexander 
theory. In this way we equate the Alexander and singular cohomology for 
paracompact spaces that are homologically locally connected in all dimensions. 

Section 6.lO contains definitions of the characteristic classes of a manifold 
and the normal characteristic classes of one manifold imbedded in another. 
These are related in the Whitney duality theorem, which is a useful tool for 
establishing non-imbeddability results. 

I THE SLANT PRODUCT 

We are ready now to introduce a new product which pairs cohomology of a 
product space and homology of one of the factors to the cohomology of the 
other factor. This product will be used in the next section to prove the duality 
theorem for topological manifolds. In this section we shall establish some of 
its properties. We shall also introduce new cohomology modules of a pair 
(A,B) in a space X which appear to depend on the imbedding of (A,B) in X. 
These will be used in the proof of the duality theorem in the next section. 
Later in the chapter, we shall introduce the Alexander cohomology modules 
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and prove that these are isomorphic to the abovementioned ones in all 
relevant cases. 

Given chain complexes C and C' over R and a cochain 

c* E Hom ((C ® C')n, G) 

and chain c' E C' q 09 G', their slant product c*/c' E Hom (Cn-q , G 09 G') is 
the (n - q)-cochain such that if c' = ~i ci ® g; with ci E C~ and g; E G', then 

(c* /c',c) = ~ (c*, c ® ci) ® g; c E Cn- q , 
It is easily verified that 

o(e* / e') = [(oe*)/ e'l + (- l)n-'lc* / ae' 

Therefore the slant product of a cocycle and a cycle is a cocycle, and if the 
co cycle is a coboundary or the cycle is a boundary, the slant product is 
a coboundary. Hence there is a slant product of Hn(C ® C'; G) and Hq(C';G') 
to Hn-q(C; G ® G') such that {e* }/{c'} = {c* /c'} for {c*} E Hn(C ® C'; G) 
and {c'} E Hq(C';G'). 

For topological pairs (X,A) and (Y,B) let 

T: [Ll(X)/Ll(A)] ® [Ll(Y)/Ll(B)] ~ [Ll(X X Y)]/[Ll(X X B U A X Y)] 

be a functorial chain map given by the Eilenberg-Zilber theorem. For 
u E Hn((X,A) X (Y,B); G) and z E Hq(Y,B; G'), their slant pmduct 

u/z E Hn-q(X,A; G ® G') 

is defined to equal the slant product (T* u) / z. The following properties of this 
slant product are easy consequences of the definitions. 

I Given f: (X,A) ~ (X',A'), g: (Y,B) ~ (Y',B'), U E Hn((X',A') X (Y',B'); G), 
and z E Hq(Y,B; G'), then, in Hn-q(X,A; G ® G'), 

[(f X g)*u]/z = f*(u/g*z) • 

2 Given u E Hp(X,A; G), v E Hq(Y,B; G'), and z E Hq(Y,B; Gil), if {X X B, 
A X Y} is an excisive couple in X X Y, then, in Hp(X,A; G ® G' ® Gil), 

(u X v)/z = Jl(u ® (v,z») • 

3 Let {(Xl,AI), (X2,A2)} and {(YI,BI), (Y2,B2)} be excisive couples in X and 
Y, respectively. Given 

u E Hn((Xl U X2) x (Yl U Y2), Xl x Bl U X2 X B2 U Al X Yl U A2 x Y2; G) 

and 

z E Hq(YI U Y2, BI U B2; G') 

then, in Hn-q+l(Xl U X2, Al U A2; G 09 G'). 

[u I (Xl U X2, Al U A2) X (YI n Y2, BI n B2)]/a*z 
= (-1)n- Q- 18*([u I (Xl n X2, Al n A2) X (YI U Y2, BI U B2)]/Z) • 
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The following formulas express relations between the slant product and 
the cup and cap products. We sketch proofs in which the Alexander-Whitney 
diagonal approximation a ~ ~i+j=deg a ia (8) aj is used in Ll(X) and its tensor 
product with itself 

a (8) a' ~ ~ (-l)j(P-i)(ia (8) ja') (8) (ap_i (8) a~_j) deg a = p, deg a' = q 
',} 

is used in Ll(X) (8) Ll(Y). 

4 Given v E Hp(X,A; G), u E Hn((X,A') X (Y,B); G'), and z E Hq(Y,B; Gil), 
then, in Hp+n-q(X, A U A'; G (8) G' (8) Gil), 

V V (u/z) = [(v X 1) v u]!z 

PROOF Let c! be a p-cochain of Ll(X), c~ an n-cochain of Ll(X) 0 Ll(Y), 
and a' E Llq( Y). It suffices to prove that 

c! v (c~ fa') = [(c! (8) 1) v c~]!a' 

If a E Llp+n_q(X), then 

<cT v (c~ fa'), a) = <c!, pa) (8) <c~ /a',an _ q) 
= <c!, pa) (8) <c~, an_ q (8) a') 
= <c! (8) 1, pa (8) oa') 0 <c~, an _ q (8) a') 
=«cf (8)l)vc~,a(8)a') =<[(cf01)vc~]!a',a)-

:; If u E Hn((X,A) X (Y,B); G), v E Hp(Y,B'; G'), and z E Hq(Y,B U B'; Gil), 
then, in Hn-(q-p)(X,A; G (8) G' 0 Gil), 

u/(v r'\ z) = [u v (1 X v)]!z 

PROOF Let c! be an n-cochain of Ll(X) (8) Ll(Y), c~ be a p-cochain of Ll(Y), 
and a' E Llq(Y). It suffices to prove that 

c f / ( c ~ f"'\ a') = [c T v (1 (8) c ~ ) ]! a' 

If a E Lln_(q_p)(X), then 

<cT /(c~ f"'\ a'), a) = <c!, a 0 (c! f"'\ a') 
= <c!, (1 0 c~) f"'\ (a (8) a') 
= <c! v (1 (8) c~), a 0 a') 
= <[c! v (1 (8) c!)]!a', a) -

6 Given u E Hn((X,A) X (Y,B); G), w E Hr(X,A; G'), and z E Hq(Y,B; Gil), 
let p: X X Y ~ X be the protection to the first factor and let 

T: G (8) Gil 0 G' ~ G (8) G' (8) Gil 

interchange the last two factors. Then, in Hr_(n_q)(X; G 0 G' (8) Gil), 

p* (u f"'\ (w X z)) = T* [(u/z) f"'\ w] 

PROOF Let c* be an n-cochain of Ll(X) (8) Ll(Y), a E Llr(X), and a' E Llq(Y). 
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Then 

fl(p)( c* ("'"\ (a ® a')) = fl(p)[ L (- 1 )i(q-j)(r_ia ® q_p') ® < c*, ai ® aj)] 
i+j=n 

= r-(n-q)a ® < c* , an_q ® a') 
= r-(n-q)a ® < c* / ai, an_q) 
= (c* / a') ("'"\ a • 

For a topological space X let SIX) be the diagonal of X defined by 
SIX) = {(x,x' ) E X X X I x = x'}. Given u E Hn(X X X, X X X - SIX); R) 
and a pair (A,B) in X, define 

Yu: Hq(X - B, X - A; G) ~ Hn-q(A,B; G) 

by Yu(z) = [u I (A,B) X (X - B, X - A)l!z (with R ® G identified with G). 
If i: (A,B) C (A',B') and i: (X - B', X - A') C (X - B, X - A), it follows 
from property 1 that there is a commutative diagram (all coefficients G) 

Hq(X - B', X - A') ~ Hn-q(AI,B') 

i*l 1i ' 

Hq(X - B, X - A) ~ Hn-q(A,B) 

Thus Yu is a natural transformation from Hq(X - B, X - A) to Hn-q(A,B) on 
the category of pairs of subspaces and inclusion maps in X. It follows from 
property 3 that Yu commutes up to sign with the connecting homomorphisms 
of relative Mayer-Vietoris sequences. 

For a pair (A,B) in a topological space X we define a neighborhood 
(U, V) of (A,B) to be a pair in X such that U is a neighborhood of A and V is 
a neighborhood of B. The family of all neighborhoods of (A,B) in X is directed 
downward by inclusion. Hence 

{Hq( U, V; G) I (U, V) a neighborhood of (A,B)} 

is a direct system, and we define 

fIq(A,B; G) = lim~ {Hq(U,V; G)} 

where (U, V) varies over neighborhoods of (A,B) [or over the cofinal family of 
open neighborhoods of (A,B)]. The restriction maps Hq(U'y; G) ~ Hq(A,B; G) 
define a natural homomorphism 

i: fIq(A,B; G) ~ Hq(A,B; G) 

The pair (A,B) is said to be tautly imbedded in X, or to be a taut pair in X 
(with respect to Singular cohomology), if i is an isomorphism for all q and G. 
The definition of tautness can be formulated for any cohomology theory (or 
any contravariant functor). We shall see examples later of a subspace taut 
with respect to one cohomology theory but not with respect to another. 

Following are some examples. 

7 If (A,B) is an open pair, or, more generally, if it has arbitrarily small 
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neighborhoods which are homotopy equivalent to (A,B), then (A,B) is a taut 
pair in X. 

8 Let A' = {(x,y) E RZI x > 0, y = sin l/x}, let A" = {(x,y) E RZI x = 0, 
Iyl ::::; I}, and let A = A' U A" c RZ. Then A' and A" are the path compo­
nents of A, and so HO(A;Z) :::::: Z EEl Z. Since A is connected, in any open 
neighborhood V of A in RZ, A' and A" must be in the same path component 
of V (the path components of V are the same as the components of V because 
V is locally path connected). It follows that HO(A;Z) = lim~ {HO( V;Z)}, where 
V varies over the connected open neighborhoods of A in RZ. Therefore 
HO(A;Z) :::::: Z and i: HO(A;Z) -7 HO(A;Z) is not an epimorphism. Thus A is not 
a taut subspace of RZ with respect to singular cohomology. 

9 LEMMA Let (A,B) be a pair in X. Then, if two of the three pairs (B, 0), 
(A, 0), and (A,B) are taut in X, so is the third. 

PROOF This follows from the exa,ctness of the cohomology sequence of a 
triple, from the fact that a direct limit of exact sequences is exact, and from 
the five lemma. • 

Recall (exercise set l.C) that a normal space X is an absolute neighbor­
hood retract if it has the property that whenever it is imbedded as a closed 
subset of a normal space, it is a retract of some neighborhood. Also recall that 
a space X is binormal if X X I (hence also X) is normal. 

10 THEOREM Any imbedding of an absolute neighborhood retract as a 
closed subspace of a binormal absolute neighborhood retract is taut. 

PROOF Assume A C X, where A and X are absolute neighborhood retracts 
and A is closed in the binormal space X. There is a neighborhood V of A in 
X such that A is a retract in V. Then H*(V) -7 H*(A) is an epimorphism, 
and this implies that 

i: H*(A) -7 H*(A) 

is an epimorphism. 
To show that it is also a monomorphism, let V be an open neighborhood 

of A in X. There is a closed neighborhood V' of A in V of which A is a retract. 
Let r: V' -7 A be a retraction and define a map 

F: (V' X 0) U (A X 1) U (V' X 1) -7 V 

by F(x,O) = x and F(x,l) = r(x) for x E V' and F(x,t) = x for x E A and t E I. 
Because A is closed in X, (V' X 0) U (A X 1) U (V' X 1) is closed in V' X I, 
the latter being a normal space because it is a closed subset of the normal 
space X X I: Since V is an open subset of the absolute neighborhood retract X, 
it follows (see exercise l.e.4) that V is an absolute neighborhood retract and 
F can be extended to a map F: N -7 V, where N is a neighborhood of 
(V' X 0) U (A X 1) U (V' X 1) in V' X I. N contains a set of the form V X I, 
where V is a neighborhood of A in U', and F' I V X I is a homotopy from the 
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inclusion map j: V C U to kr'. where r' = r I V: V ~ A and k: A C U. 
Therefore there is a commutative triangle 

H*(U) ~ H*(A) 

J*\ ,jr'* 

H*(V) 

which shows that ker k* C ker j * . Thus, if an elementin H * (U) restricts to 0 
in H* (A), it restricts to 0 in H* (V) for some smaller neighborhood V, hence 
it represents 0 in lim~ {H*(U)} = H*(A). Therefore i: H*(A) ~ H*(A) is 
a monomorphism and A is taut in X. • 

II COROLLARY If A, B, and X are compact polyhedra, any imbedding of 
(A,B) in X is taut. 

PROOF This follows from the fact (exercise 3.A.l) that a compact polyhedron 
is an absolute neighborhood retract and from theorem 10 and lemma 9. • 

One reason for introducing the modules Hq(A,B; G) is the following 
result, which asserts that any pair (A,B) in X is taut with respect to the 
functor Hq. 

I 2 THEOREM As U varies over the neighborhoods of A, there is an 
isomorphism 

PROOF Restricting U to the cofinal family of open neighborhoods, we have 
Hq( U; G) = Hq( U; G), and the limit on the left is, by definition, equal to the 
module on the right. • 

If (A,B) and (A',B') are pairs in X and (U,V) and (U',V') are respective 
open neighborhoods, there is a relative Mayer-Vietoris sequence of 
{(U,Y), (U',Y')}. As (U,Y) and (U',V') vary over open neighborhoods of (A,B) 
and (A',B'), respectively, (U U U', V U V') varies over a cofinal family of neigh­
borhoods of (A U A', BUB'). If (A,B) and (A',B') are closed pairs in a nor­
mal space X, it is also true that (U n U', V n V') varies over a cofinal family 
of neighborhoods of (A n A', B n B'). Because the direct limit of exact 
sequences is exact, we obtain the following result, which is another reason for 
our interest in the modules H* (A,B). 

13 THEOREM If (A,B) and (A',B') are closed pairs in a normal space X, 
there is an exact relative Mayer- Vietoris sequence (for any coefficient 
module G) 

... ~ Hq(A U A', BUB') ~ Hq(A,B) EEl Hq(A',B') ~ 
Hq(A n A', B n B') ~ • 

Given u E Hn(x X X, X X X - 8(X); R), as (U, V) varies over neighbor­
hoods of (A,B), the homomorphisms 

Yu: Hq(X - V, X - U; G) ~ Hn-q( U, V; G) 
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define a homomorphism 

lim~ {Hq(X - V, X - U; G)} ---'> lim~ {Hn-q(u,v; G)} 

Because singular homology has compact supports, if X is a Hausdorff space 
the limit on the left is isomorphic to Hq(X - B, X - A; G). Therefore we 
obtain a natural homomorphism 

Yu: Hq(X - B, X - A; G) ---'> fln-q(A,B; G) 

such that if (U,v) is a neighborhood of (A,B), there is a commutative diagram 
(all coefficients G) 

Hq(X - V, X - U) ---'> Hq(X - B, X - A) 

Hn- q( U, V) ---'> fln-q(A,B) --4 Hn-q(A,B) 

If (A,B) and (A',B') are closed pairs in a normal space X, then Yu maps the 
exact Mayer-Vietoris sequence of the couple of open pairs 

{(X - B, X - A), (X - B', X - A')} 

into the exact Mayer-Vietoris sequence of theorem 13 in such a way that each 
square is commutative up to sign. 

2 DUALITY IN TOPOLOGICAL MANIFOLDS 

This section is devoted to a study of homology properties of topological 
manifolds. Over a connected manifold as base space there is a fiber-bundle 
pair called the homology tangent bundle. An orientation class of this bundle 
gives rise to a duality in the manifold asserting that the cohomology of 
a compact pair in the manifold is isomorphic to the homology of its comple­
ment. This duality theorem is proved by using the orientation class and the 
slant product to define a natural homomorphism from homology to cohomology. 
The resulting homomorphism is shown to be an isomorphism by proving it 
first in euclidean space and then in an arbitrary manifold using the piecing­
together technique based on Mayer-Vietoris sequences. 

A topological n-manifold (without boundary) is a paracompact Hausdorff 
space in which each point has an open neighborhood homeomorphic to Rn 
(called a coordinate neighborhood in the manifold). Following are some 
examples of n-manifolds. 

I Rn and Sn are n-manifolds. 

2 An open subset of an n-manifold is an n-manifold. 

3 The product of an n-manifold and an m-manifold is an (n + m)-manifold. 
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4 pn is an n-manifold, Pn(C) a 2n-manifold, and Pn(Q) a 4n-manifold for all 
n. In fact, if X denotes one of these spaces and is coordinatized by homogene­
ous coordinates [to,tl, ... ,tn ], then for each 0 ::::; i ::::; n the subset Ai C X 
of points having ith coordinate 0 is a projective space of dimension n - 1 and 
X - Ai is homeomorphic to R, RZ, or R4, respectively. Hence, X - Ai is a 
coordinate neighborhood of X, and X is covered by these n + 1 coordinate 
neighborhoods. 

:. LEMMA In an n-manifold X each point x has an open neighborhood V 
such that (V X X, V X X - o(V)) is homeomorphic to V X (X, X - x) by a 
homeomorphism preserving first coordinates. 

PROOF Let U be a coordinate neighborhood containing x. Without loss of 
generality, we can suppose that there is a homeomorphism <p: U:::::; Rn such 
that <p(x) = O. Let D' = {z E Rn Illzll ::::; 2} and V = {z E Rn Illzll < I} and 
define D = <p-l(D') and V = <p-l(V'). Then V is an open neighborhood of x 
contained in the compact set D. If (X',X") E V X D - o(V), there is a unique 
point z'" E Rn such that Ilz'" II = 2 and <p(x") belongs to the closed segment 
from <p(x') to Z"'. If <p(x") = t<p(x') + (1 - t)Zll', with t E I, let h(x',x") E D - x 
be the point such that <ph(x',x") = (1 - t)Zll', as illustrated 

x' • 
x' 

D 

and define h(x',x') = x. A homeomorphism 

D' 

1/;: (V X X, V X X - o(X)) :::::; V X (X, X - x) 

having the desired properties is defined by 

'" x ,x {( ' ") 
I/;(x,x ) = (x', h(x',x")) 

x" ¢ D 

x"ED • 

It follows from lemma 5 that if x' E V then (X, X-x') is homeomorphic 
to (X, X - x). Hence we obtain the following result. 

6 COROLLARY In a connected n-manifold X the group of homeomorphisms 
acts transitively; in particular, the topological type of (X, X -' x) is independ­
ent of x. Furthermore, projection to the first factor p: X X X -~ X is the pro­
jection of a fiber-bundle pair (X X X, X X X - o(X)) with fiber pair 
(X, X - x). • 

If V is a coordinate neighborhood of x in an n-manifold X, the couple 
{V, X - x} is excisive, and so there is an excision isomorphism 
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H*(V, V - X; G);:::::; H*(X, X - X; G) 

Since H* (V, V - x; G) ;:::::; H* (Rn, Rn - 0; G), it follows that 

Hq(X, X - x; G) ;:::::; {~ q=l=n 
q=n 

and so the fiber pair (X, X - x) of the fiber-bundle pair of corollary 6 has the 
same homology as (Rn, Rn - 0). For this reason the fiber-bundle pair of corol­
lary 6 will be called the homology tangent bundle of X (the tangent bundle 
itself is an n-plane bundle defined if X is a differentiable manifold and having 
homology properties isomorphic to those of the homology tangent bundle). 

A connected n-manifold X is said to be orientable (over R) if its 
homology tangent bundle is orientable [that is, if there exists an element 
V E Hn(x X X, X X X - 8(X); R) such that for all x E X, V I x X (X, X - x) 
is a generator of Hn(x X (X, X - x); R)]. Such a cohomology class V is called 
an orientation of X. An n-manifold X (which is not assumed to be connected) 
is said to be orientable if each component is orientable, and an orientation of 
X is defined to be a cohomology class V E Hn(x X X, X X X - 8(X); R) 
whose restriction to each -component is an orientation of that component. 

7 EXAMPLE For Rn the fiber-bundle pair (Rn X Rn, Rn X Rn - 8(Rn)) is 
trivial, because the map 

f(z,z') = (z, Z' - z) 

is a homeomorphism f: (Rn X Rn, Rn X Rn - 8(Rn)) ;:::::; Rn X (Rn, Rn - 0) 
preserving first coordinates. Therefore Rn is an orientable n-manifold. 

The results of Sec. 5.7 dealing with the homology properties of sphere 
bundles carry over to the homology tangent bundle. We list some of these 
explicitly. 

8 Two orientations V and U' of a connected manifold X are equal if and 
only if for some Xo E X 

U I Xo X (X, X - xo) = V'I Xo X (X, X - xo) • 

9 Any manifold has a unique orientation over Z2. • 

lOA simply connected manifold is orientable over any R. • 

II An n-manifold X is orientable if and only if there is an open covering 
{V} of X and a compatible family {Uv E Hn(V X X, V X X - 8(V); R)}, 
where Uv corresponds to an orientation of V under the excision isomorphism 

Hn(V X X, V X X - 8(V); R) ;:::::; Hn(V X V, V X V - 8(V); R) • 

The duality theorem asserts that if U E Hn(X X X, X X X - 8(X); R) is 
an orientation of X, then for any compact pair (A,B) in X, Yu is an isomorphism 
of Hq(X - B, X - A; G) onto Hn-q(A,B; G). We prove this first for Rn by a 
sequence of lemmas. 
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12 LEMMA Let A C Rn be homeomorphic to a simplex and let ao EA. 
Then Hq(Rn - ao, Rn - A; G) = 0 for all q and G. 

PROOF Regarding Rn as an open subset of Sn, there is an excision isomorphism 
Hq(Rn - ao, Rn - A; G) ;:::; Hq(Sn - ao, Sn - A; G). Because Sn - ao is 
homeomorphic to Rn, Hq(sn - ao; G) = O. From lemma 4.7.13 and the 
universal-coefficient formula, Hq(sn - A; G) = O. The lemma now follows from 
exactness of the reduced homology sequence of the pair (Sn - ao, Sn - A). • 

13 COROLLARY If A C Rn is homeomorphic to a simplex and U is an 
orientation of Rn over R, then for all q and R modules G 

Yu: Hq(Rn, Rn - A; G) ;:::; Hn-q(A;G) 

PROOF Let ao E A and consider the diagram (all coefficients G) 

y'l y, 1 y" 1 
Hn-q+!(A,ao) ---) ... 

The rows are exact, and each square either commutes or anticommutes. 
Since A is contractible, H* (A,ao) = O. Using lemma 12, we see that trivially 
Yu: Hq(Rn - ao, Rn - A) ;:::; Hn-q(A,ao). By the five lemma, to complete the 
proof we need only verify that Yu: Hq(Rn, Rn - ao) ;:::; Hn-q(ao). Because U is 
an orientation, U I lao X (Rn, Rn - ao)] = 1 X u, where u E Hn(Rn, Rn - ao; R) 
is a generator. By property 6.1.2, 

yu\z) = < u,z) 1 

Since u is a generator of Hn(Rn, Rn - ao; R) ;:::; Hom (Hn(Rn, Rn - ao; R), R), 
it follows that the map z -c> < u,z) of Hn(Rn, Rn - ao; R) to R is an isomor­
phism; and hence so is Yu: Hn(Rn, Rn - ao; R) ;:::; HO(ao;R). If q =1= n, it is 
trivially true that Yu: Hq(Rn, Rn - ao; R) ;:::; Hn-q(ao;R), since both modules 

are trivial. • 

14 THEOREM If U is an orientation of Rn over Rand (A,B) is a compact 
polyhedral pair in Rn, then for all q and all R modules G there is an 
isomorphism 

PROOF Because of the naturality properties of Yu, it suffices to prove this for 
the case where B is empty. The theorem follows for A from corollary 13 by 
induction on the number of simplexes in a triangulation of A, using Mayer­
Vietoris sequences and the five lemma. • 

15 COROLLARY If U is an orientation of Rn over Rand (A,B) is a compact 
pair in Rn, then for all q and R modules G there is an isomorphism 

Yu: Hq(Rn - B, Rn - A; G) ;:::; Hn-q(A,B; G) 

PROOF Since the family of compact polyhedral pairs is cofinal in the family 
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of all neighborhoods of a compact pair (A,B) in Rn, the corollary follows from 
theorem 14 by taking direct limits. • 

Because of the commutativity of the triangle 

Hq(Rn - B, Rn - A; G) 

'I'i! ~[' 

iin-q(A,B; G) ~ Hn-q(A,B; G) 

it follows from theorem 14 and corollary 15 that any imbedding of a compact 
polyhedral pair in Rn is taut (which is also a consequence of corollary 6.1.11). 

As an immediate result of corollary 15, we obtain the following Alexander 
duality theorem. 

16 THEOREM If A is a compact subset of Rn, then for all q and R modules G 

Hq(Rn - A; G) ;:::: Hn-q-l(A;G) 

PROOF Because H* (Rn;G) = 0, there is an isomorphism 

0*: Hq+l(Rn, Rn - A; G) ;:::: Hq(Rn - A; G) 

The result is obtained by composing the inverse of this isomorphism with the 
isomorphism of corollary 15. • 

For general orientable manifolds there is the following duality theorem. 

17 THEOREM Let U be an orientation over R of an n-manifold X and let 
(A,B) be a compact pair in X. Then for all q and R modules G there is an 
isomorphism 

Yu: Hq(X - B, X - A; G) ;:::: Hn-q(A,B; G) 

PROOF Because of the naturality properties of Yu, it suffices to prove the 
theorem for the case where B is empty. If A is contained in some coordinate 
neighborhood Vof X and U' = U I (V X V, V X V - 8(V)) is the induced 
orientation of V, there is a commutative triangle (all coefficients G) 

Hq(V, V - A) :? Hq(X, X - A) 

Y"\ ,!?u 

By corollary 15, YU' is an isomorphism, hence Yu is also an isomorphism. The 
result for arbitrary compact A follows by induction on the finite number of 
coordinate neighborhoods needed to cover A, using naturality of Yu, the usual 
Mayer-Vietoris technique, and the five lemma. • 

In case X is compact, by applying theorem 17 to the pair (X, 0) and 
observing that i: Hq(X;G) ;:::: Hq(X;G), we obtain the following Poincare 
duality theorem. 
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18 THEOREM If U is an orientation over R of a compact n-manifold X, 
then for all q and R modules G there is an isomorphism 

Yu: Hq(X;G) ::::: Hn-q(X;G) -

A pair (X,A) is called a relative n-manifold if X is a Hausdorff space, A is 
closed in X (A may be empty), and X - A is an n-manifold. For relative 
manifolds there is the following Lefschetz duality theorem. 

19 THEOREM Let (X,A) be a compact relative n-manifold such that X - A 
is orientable over R. For all q and R modules G there is an isomorphism 

Hq(X - A; G) ::::: iin-q(X,A; G) 

PROOF Let {N} be the family of closed neighborhoods of A directed down­
ward by inclusion. There are isomorphisms 

lim~ {Hq(X - N; G)} ::::: Hq(X - A; G) 
lim~ {iin-q(X,N; G)} ::::: iin-q(X,A; G) 

the first because singular homology has compact supports and the second as a 
consequence of theorem 6.1.12. Let V be an open neighborhood of A with V 
contained in the interior of N and let U be . an orientation of X - A over R. By 
theorem 17 and standard excision propertiesl there are isomorphisms (all 
coefficients G) 

Hq(X - N) ;? Hq((X - A) - (N - V), (X - A) - (X - V)) 

:::1 'Iv 

fIn-q(X,N) :::7 iin-q(X - v, N - V) 

which yield the result on passing to the limit. -

An n-manifold X with boundary X is a paracompact Hausdorff space 
such that (X,X) is a relative n-manifold and every point x E X has a neighbor­
hood V such that (V, V n X) is homeomorphic to Rn-l X (1,0). Since X may 
be empty, the concept of manifold with boundary encompasses that of mani­
fold without boundary. 

If X is an n-manifold with boundary X, then X has neighborhoods N such 
that (N,X) is homeomorphic to X X (1,0).1 Such a neighborhood N is called a 
collaring of X, and its interior is called an open collaring of X. (In case X is 
compact, any neighborhood of X contains a collaring of x.) Because of the 
existence of such collarings, X - X is a weak deformation retract of X, and 
the pair ((X - X) X (X - X), (X - X) X (X - X) - 8(X -X)) is a weak 
deformation retract of (X X X, X X X - 8(X)). 

An n-manifold X with boundary X is said to be orientable over R if 
X - X is orientable over R. An orientation over R of X is a class 

1 See M. Brown, Locally flat imbeddings of topological manifolds, Annals of Mathematics, 
vol. 75, pp. 331-341, 1962. 
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U E Hn(X X X, X X X - 8(X); R) whose restriction to ((X - X) X (X - X), 
(X - X) X (X - X) - 8(X - X)) is an orientation of X - X over R. For 
manifolds with boundary the Lefschetz duality theorem takes the following 
form. 

20 THEOREM Let X be a compact n-manifold with boundary X and orien­
tation U over R. For all q and R modules G there are isomorphisms (where 
i: X - X eX) 

Hq(X;G) ~ Hq(X - X; G) ~ Hn-q(x,x; G) 

Hq(X,X; G) ~ Hn-q(x - X; G) ~ Hn-q(X;G) 

PROOF Because i is a homotopy equivalence, i* and i * are isomorphisms. 
Let N be a collaring of X with interior IV. Let U' be the orientation of X - X 
obtained by restricting U. In the following commutative diagram each hori­
zonal map is induced by inclusion and is an isomorphism because it is an 
excision (labelled e) or a homotopy equivalence (labelled h) (all coefficients G): 

Hq(X - X) ~ Hq(X - N) ~ Hq((X - X) - (N - IV), (X - X) - (X - IV)) 

yut yut LyU' 

Hn-q(x,x) ~ Hn-q(X,N) ~ Hn-q(x - IV, N - IV)) 

Because (X - IV, N - IV) has arbitrarily small neighborhoods of which it is a 
deformation retract i: Fln-q(x - IV, N - IV) ~ Hn-q(X - IV, N - IV), and it 
follows from theorem 17 that the right-hand vertical map is an isomorphism 
(because it corresponds to the isomorphism '10'). Therefore the left-hand 
vertical map is also an isomorphism proving the first part of the theorem. 

Similarly, there is a commutative diagram 

~ Hq(X - X, (X - X) - (X - IV)) 

~L ~L Lw 
Hn-q(X - X) -tt Hn-q(X - IV) ~ Hn-q(x - IV) 

Because X - IV has arbitrarily small neighborhoods of which it is a deforma­
tion retract, it follows from theorem 17 that the right-hand vertical map is an 
isomorphism. Therefore the left-hand vertical map is also an isomorphism, 
proving the second part of the theorem. • 

From the isomorphisms of theorem 20 and the universal-coefficient 
theorem for homology, we obtain a short exact sequence 

o ~ Hq(X;R) ® G ~ Hq(X;G) ~ Hq+l(X;R) * G ~ 0 

and a similar short exact sequence for Hq(X,X; G). Since this is so for every 
R module G, from theorem 5.5.13 we have the following result. 

21 COROLLARY If X is a compact n-manifold with boundary X orientable 
over R, then H* (X;R) and H* (X,X; R) are finitely generated. • 
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Later in the chapter (see theorem 6.9.11) we shall prove that corollary 21 
is also valid for nonorientable manifolds. 

3 THE Ft:NDA.MENTAL CI.ASS OF A M."-NIFOLD 

In view of the importance of the concept of orientability of manifolds, we 
shall now investigate some equivalent formulations. We shall show that a 
compact connected n-manifold is orientable if and only if its n-dimensional 
homology module is nonzero. In fact, any orientation class of the manifold 
will be shown to correspond to a generator of the n-dimensional homology 
module. Moreover, if z is the element of Hn corresponding to the orientation, 
then the cap product of z and a cohomology class defines a homomorphism 
which equals, up to sign, the inverse of the duality isomorphism. The methods in 
this section rely heavily on the technique of piecing together homology classes, 1 

analogous to the piecing together of cohomology classes in lemma 5.7.16. 
Let X be a space, X' a subspace of X, and If = {A} a collection of sub­

sets of X - X'. A compatible c? family is a family {ZA E Hq(X, X - A; G)} 
(for some fixed q and G) indexed by U' such that if A, A' E If, then ZA and ZA' 

map to the same element of Hq(X, X - A n A'; G) under the homomorphisms 

Hq(X, X - A; G) ---7 Hq(X, X - A n A'; G) ~ Hq(X, X - A'; G) 

The compatible If families form a module with respect to componentwise 
operations that will be denoted by H8'(X,X'; G). For the collection If of all 
compact subsets of X - X' we use Hqc(X,X'; G) to denote the corresponding 
module. 

We are interested in the module HnC(X,X; R) for an n-manifold X with 
boundary X. The following lemma is important in this connection. 

I LEMMA Let X be an n-manifold with boundary X and let A be a com-
pact subset of X - X. For all R modules G 

Hq(X, X - A; G) = 0 

PROOF Assume first that A is contained in some coordinate neighborhood V 
in X - X. By excision, Hq(V, V - A) ;::::; Hq(X, X - A), and since V is homeo­
morphic to Rn, we can use corollary 6.2.15 to obtain 

Hq(V, V - A) ;::::; fIn-q(A) = 0 

For arbitrary compact A the result follows by induction on the number of co­
ordinate neighborhoods needed to cover A, using Mayer-Vietoris sequences. • 

In an n-manifold X with boundary X a small cell in X - X is defined to 
be a compact subset A having an open neighborhood V C X - X such that 

1 This technique can be found in H. Cartan, Methodes modernes en topologie a1gebrique, 
Commentarii Mathematici Helvetici, vol. 18, pp. 1-15, 1945. 
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(V,A) is homeomorphic to (Rn,En). Every point of X - X has arbitrarily small 
neighborhoods which are small cells. If A and V are as above, there is an 
excision isomorphism 

Hq(X, X - A; G) ;:::: Hq(V, V - A; G) ;:::: {~ 

If Xo E A, then the inclusion map induces isomorphisms 

Hq(X, X - A; G) ;:::: Hq(X, X - Xo; G) 

q-=l=-n 
q=n 

We use HqSC(X,X; G) to denote the module of compatible ef families, where ef 
consists of the collection of small cells of X - X. Since the collection of small 
cells is contained in the collection of compact subsets of X - X, there is 
a natural homomorphism 

HqC(X,X; G) ~ Hqsc(X,X; G) 

which assigns to a compatible family {ZA} indexed by all compact A the com­
patible subfamily of elements indexed by small cells. 

2 LEMMA Let X be an n-manifold with boundary X. Then, for all G 

HnC(X,X; G) ;:::: HnSC(X,X; G) 

PROOF For each positive integer i let ~ be the collection of compact subsets 
of X - X contained in the union of i small cells. Then ~ C ~+1 and U ~ is 
the collection of all compact subsets of X - X. There are homomorphisms 

and an isomorphism Hnc ;:::: lim {H~i}. 
Since every element of ef1 is contained in some small cell, it is obvious 

that H~l ;:::: Hnsc. By the usual Mayer-Vietoris technique and lemma 1, it 
follows that for any i;::: 1 H~i+l ;:::: H~i. Combining these isomorphisms 
yields the result. • 

This gives the following important result. 

3 THEOREM Let X be an n-manifold with boundary X and let 

{ZA} E Hnc(X,X; G) 

(a) {ZA} = 0 if and only if Zx = 0 for all x E X-X. 
(b) If X is connected, {ZA} = o if and only ifzx = o for some x E x-x. 

PROOF (a) follows from lemma 2 and the observation that if A is a small cell 
and x E A, then 

Hn(X, X - A; G) ;:::: Hn(X, X - x; G) 

and so ZA = 0 if and only if Zx = O. 
To prove (b), assume zXo = 0 for some Xo EX - X. Because X is 

connected, so is its weak deformation retract X - X. This implies that if 
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x E X - X, there is a finite sequence of small cells AI, , Am in X - X 
such that Xo E Al and x E Am, and Ai meets Ai+l for 1 S i < m. Choose a 
pOint Xi E Ai n Ai+l for 1 S i < m. There are isomorphisms 

Hn(X, X - xo) ~ Hn(X, X - AI) ;;? Hn(X, X - Xl) ~ ... 
~ Hn(X, X - Am) ;;? Hn(X, X - X) 

from which it follows that if Z"'o = 0, then z'" = 0. Since this is so for all 
X E X - X, the result follows from (a). • 

If X is an n-manifold with boundary X, a fundamental family of X over 
R is an element {ZA} E HnC(X,X; R) such that for all X E X - X, z" is a gener­
ator of Hn(X, X - X; R). The relation between fundamental families and 
orientations is made precise in the next result. 

4 THEOREM Let X be an n-manifold with boundary X. There is a one-to­
one correspondence between orientations V (over R) of X and fundamental 
families {ZA} (over R) of X such that V and {ZA} correspond if and only if 
Yu(ZA) = 1 E HO(A;R) for all compact A in x-x. 

PROOF If V is an orientation of X, let V' be the induced orientation of 
x-x. For any compact A C X - X we have the commutative diagram (all 
coefficients R) 

Hn(X,X - A) ~ Hn(X - X, (X - X) - A) 

l'iu 
fjO(A) 

By theorem 6.2.17, the right-hand vertical map is an isomorphism, and since 
1 E HO(A) is the image of 1 E j{O(A), there is a unique ZA E Hn(X, X - A) 
such that 'Yui* -1(ZA) = 1 E j{O(A). Because of the uniqueness of ZA and the 
naturality of Yu and 'iu', the collection {ZA} is a compatible family. From the 
commutativity of the above diagram, Yu(ZA) = 1 E HO(A) for all compact A 
in X-X. Hence we need only verify that {ZA} is a fundamental family. In 
case A = x, it follows from the commutativity of the above square and the 
fact that i: j{O(x);::::; HO(x) that Yu: Hn(X, X - x) ;::::; HO(x). Therefore 
z'" = Yu- I (I) is a generator of Hn(X, X - x). Hence {ZA} is a fundamental 
family with the desired property, and the collection {Z"'}"'EX-X (and hence, by 
theorem 3a, {ZA}) is uniquely characterized by the property yu(z",) = 1 E HO(x). 

Conversely, given a fundamental family {ZA}, let Vbe any open subset 
of X - X homeomorphic to Rn. If Xo E V, then H* (V;R) ;::::; H* (xo;R), which 
implies that 

H*(V X X, V X X - 8(V); R);::::; H*(xo X (X, X - xo); R) 

If u E Hn(V X X, V X X - 8(V); R), it follows from the Kiinneth formula 
for cohomology (theorem 5.6.1) that u I Xo X (X, X - xo) = 1 X u' for a 
unique u' E Hn(x, X - Xo; R) ;::::; Hom (Hn(X, X - Xo; R), R). By property 6.1.2, 
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[u I xo X (X, X - XO)]!Z,xo = (u',z,xo) 1 

Since z,xo is a generator of Hn(X, X - Xo; R), (u' ,z,xo> completely determines 
u'. Therefore there is a unique element V E Hn(V X X, V X X - 8(V); R) 
such that [V I Xo X (X, X - xo)]!z"'o = 1 E HO(xo;R). 

We now show that for any x E V, [Vlx X (X, X - x)]!z", = 1 E HO(x;R). 
If x and x' belong to a small cell A C V, then ZA maps to z'" and to Z",'. 
Therefore [V I A X (X, X - A)]!ZA E HO(A;R) maps to [V I x X (X, X - x)]!z", 
and to [V I x' X (X, X - x')]!z"" by naturality of Yu. Since HO(A;R) ~ HO(x;R) 
and HO(A;R) ~ HO(x';R), it follows that both [V I x X (X, X - x)l!z", = 
1 E HO(x;R) and [V I x' X (X, X - x')]!z"" = 1 E HO(x';R) or neither equation 
is true. Hence the set of x E V for which [V I x X (X, X - x)]!z", = 1 E HO(x;R) 
is open and its complement in V is open. Since V is connected and 
[V I Xo X (X, X - xo)]!z"'o = 1, it follows that [V I x X (X, X - x)]!z", = 1 
for all x E V. 

This means that V is an orientation of V, and if V' is a similarly defined 
orientation for another coordinate neighborhood V' in X - X, then for any 
x E V n V', V I x X (X, X - x) = V' I x X (X, X - x). This implies that V 
and V' induce the same orientation of V n V'. Hence the collection {Vv} for 
coordinate neighborhoods V in X - X is compatible. Therefore there is an 
orientation V of X such that V I (V X X, V X X - 8(V)) = Vv. From the 
construction of Vv we see that yu(z",) = 1 E HO(x;R) for all x E X - X. By the 
first half of the proof, there is a fundamental family {ZA} such that 
Yu(ZA) = 1 E HO(A;R). Then z~ = Z,x for all x E X - X, and by theorem 3a, 
ZA = ZA for all compact A C X - X. Therefore Yu(ZA) = 1 E HO(A;R) for all A, 
proving that every fundamental family {ZA} corresponds to ~ome orientation V. 

The orientation V is uniquely characterized by the fundamental family 
{ZA}' for if V and V' are two orientations of X such that yu(z",) = Yu,(z,x) for all 
x E X - X, then V I x X (X, X - x) = V' I x X (X, X - x) for all x E X-X. 
Therefore, by lemma 5.7.13, V = V'. • 

This last result gives the following useful characterization of orientability 
for connected manifolds. 

it THEOREM Let X be a connected n-manifold with boundary X. If 
HnC(X,X; R) =1= 0, then HnC(X,X; R) ~ R and any generator is a fundamental 
family of X. 

PROOF From theorem 3b it follows that, given Xo E X - X, the homomorphism 

HnC(X,X; R) ~ Hn(X, X - Xo; R) 

sending {ZA} to z"'o is a monomorphism. Since Hn(X, X - Xo; R) ~ R, either 
HnC(X,X; R) = 0 or HnC(X,X; R) ~ R. Assume HnC(X,X; R) ~ R and let {ZA} 
be a generator of Hnc(X,X; R). Assume that for some x E X - X, z'" is not a 
generator of Hn(X, X - x; R). There is then a noninvertible element r E R 
such that z'" = rz~ for some z~ E Hn(X, X - x; R). It follows that for any small 
cell A containing x, ZA = rZA for some ZA E Hn(X, X - A; R). Because X 
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is connected, it follows, as in the proof of theorem 3b, that for any small cell 
A in X - X, ZA = rZA for some ZA E Hn(X, X - A; R). If A' is a small cell in A, 
then rZA maps to rzA' in Hn(X, X - A';.R). Because Hn(X, X - A'; R) is 
torsion free, by lemma 1, ZA maps to ZA" Therefore {ZA} E HnSC(X,X; R). 
By lemma 2, it follows that the original element {ZA} E HnC(X,X; R) is divisible 
by the element r E R. Since r is not invertible, this contradicts the hypothesis 
that {ZA} is a generator of HnC(X,X; R). • 

6 COROLLARY If X is a connected n-manifold with boundary X, then X is 
orientable over R if and only if HnC(X,X; R) -=1= O. 

PROOF This is immediate from theorems 4 and 5. • 

We now specialize to the case of a compact manifold. 

7 LEMMA If X is a compact n-manifold with boundary X, there is an 
isomorphism 

Hn(X,X; G) ;::::; Hnc(X,X; G) 

sending Z E Hn(X,X; G) to {ZA = image of Z in Hn(X, X - A; G)}. 

PROOF Let V be an open collaring of X and let B = X-V. Then B is com­
pact and there is a homomorphism 

Hnc(X,X; G) ~ Hn(X, X - B; G) 

sending {ZA} to ZB. Since X - B = V and (X,X) C (X, V) is a homotopy 
equivalence, the composite 

Hn(X,X; G) ~ HnC(X,X; G) ~ Hn(X, X - B; G) 

is an isomorphism. To complete the proof we need only show that the right­
hand map is a monomorphism. Assume that {ZA} is a compatible family such 
that ZB = 0 and let A be any compact set in X-X. There is then an open 
collaring V' of X such that V' C Vand V' is disjoint from A. Let B' = X - V'. 
Then A, B C B', and we have homomorphisms (all coefficients G) 

Hn(X, X - A) ~ Hn(X, X - B') ~ Hn(X, X - B) 

the second map being an isomorphism because (X, V') C (X, V) is a homotopy 
equivalence. Since ZB = 0, ZB' = 0 and ZA = O. Therefore {ZA} = 0 in 
Hnc(X,X; G). • 

8 COROLLARY A compact connected n-manifold X with boundary X is 
orientable over R if and only if Hn(X,X; R) -=1= O. 

PROOF This is immediate from corollary 6 and lemma 7. • 

If X is a compact n-manifold with boundary X, a fundamental class over 
R of X is an element Z E Hn(X,X; R) whose image in HnC(X,X; R) under the 
isomorphism of lemma 7 is a fundamental family [that is, for every x E X - X 
the image of Z in Hn(X, X - x; R) is a generator of the latter]. 
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9 THEOREM If X is a compact n-manifold with boundary X, there is a 
one-to-one correspondence between orientations U over R and fundamental 
classes z over R such that U corresponds to z if and only if yu{z) = 1 E HO(X;R). 

PROOF This follows from theorem 4 and lemma 7 on observing that an 
element v E HO(X;R) equals 1 if and only if v I x = 1 E HO(x;R) for all 

x E X-X. • 

10 COROLLARY If X is a compact n-manifold with boundary X, then if X 
is orientable, so is X, and any fundamental class of X maps to a fundamental 
class of X under the connecting homomorphism 

0*: Hn(X,X; R) ~ Hn_1(X;R) 

PROOF Let N be a collaring of X with interior N. Then N is an n-manifold 

with boundary X U (N - N), and there is a commutative diagram (all 
coefficients R) 

. ~ . 0 0 

Hn_1(X) ~ Hn_1(X U (N - N), N - N) 

Hn(X,XU (X- N») 
j* 1'::::: 

Hn(N, X U (N - N)) 

It is clear from the definition of fundamental class that if z E Hn(X,X) is a 
fundamental class of X, then i* -li*z = z' is a fundamental class of N. Because 
N is homeomorphic to X X I in such a way that X and N - N correspond to 
X X 0 and X X 1, respectively, the Kiinneth formula implies 

Hn(N, X U (N - N)) ,:::; Hn-1(X) (8) H1(I,i) 

Let wE H1(I,i) be a generator and let {Xj} be the components of X. 
Then z' corresponds to 2: zj X w for some zj E Hn-1(Xj ), and "4 -lO*Z = 
-+- 2: zj. Hence 0* z = -+- 2: zj, and since z is a fundamental class of X, 
zj X w corresponds to a fundamental class of Xj X 1. Therefore zj is non­
zero and is a generator of Hn-l(X j ). Then zj is a fundamental class of Xj, 
whence -+- 2: zj = 0* z is a fundamental class of X. • 

We are now heading toward a proof that cap product with a fundamental 
class is an isomorphism which, up to sign, is inverse to the duality isomorphism 
in a compact manifold. First we need a lemma. 

I I LEMMA Let X be a compact orientable n-manifold with boundary X 
and let Pl, P2: X X X ~ X be the proiections. Given 

u E Hq(X X X, X X X - 8(X); R), z E Hm(X X X, X X X - 8(X); G), 

and v E Hr(X;G), then 

Pl*(U 1""\ z) = P2*(U 1""\ z) in Hm_q(X;G) 

u v pT v = u v p! v in Hq+r(x X X, X X X - 8(X); G) 

PROOF Let T: (X X X, X X X - 8(X)) ~ (X X X, X X X - 8(X)) be the 


